scholarly journals Mixed Matrix Membranes Containing a Biphenyl-Based Knitting Aryl Polymer and Gas Separation Performance

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 914
Author(s):  
Raquel Martinez-Tirado ◽  
Nastasia Yuriychuk ◽  
Marta Iglesias ◽  
Mar López-González ◽  
Eva M. Maya

Novel mixed matrix membranes (MMMs) were prepared using Matrimid (M), polysulfone (PSF) or polyphenylene oxide (PPO) as the continuous phase and a porous biphenyl-based knitting aryl polymer as a filler, synthesized through the Friedel–Craft reaction. The filler had little influence on the thermal and morphological properties of the membranes but affected the mechanical and gas transport properties, which were different depending on the type of matrix. Thus, in the case of MMMs based on Matrimid, the filler increased considerably the permeability to all gases, although no improvements in selectivity were achieved. A PSF-based MMM showed minor permeability increases, but not in all gases, while the selectivity was particularly improved for hydrogen separations. A PPO-based MMM did not exhibit variation in permeability nor in permselectivity with the addition of the filler.

2015 ◽  
Vol 3 (33) ◽  
pp. 17273-17281 ◽  
Author(s):  
Lin Hao ◽  
Kuo-Sung Liao ◽  
Tai-Shung Chung

Photo-oxidative PIM-1 incorporated with ZIF-71 form well-dispersed mixed-matrix membranes with enhanced gas transport properties. These membranes have impressive separation performance for CO2/CH4 and O2/N2.


2018 ◽  
Vol 42 (14) ◽  
pp. 12013-12023 ◽  
Author(s):  
Elahe Ahmadi Feijani ◽  
Hossein Mahdavi ◽  
Ahmad Tavassoli

A CuBTC (copper(ii) benzene-1,3,5-tricarboxylate) metal organic framework (MOF) and graphene oxide (GO) nanosheets were introduced into a semi-crystalline PVDF to produce mixed matrix membranes (MMMs) to promote gas separation performance.


Sign in / Sign up

Export Citation Format

Share Document