scholarly journals An Analytical Model for Predicting the Stress Intensity Factor of Single-Hole-Edge Crack in Diffusion Bonding Laminates with Preset Unbonded Area

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1526
Author(s):  
Yang Liu ◽  
Shutian Liu

The diffusion bonding titanium alloy laminates with preset unbonded area (DBTALPUA) compared with other titanium alloy structural forms has good damage tolerance performance and designability. It is important to fast get the damage estimation of the DBTALPUA with crack. The stress intensity factor (SIF) of the crack is an effective indicator to give the damage estimation. In order to get the SIF fast, this paper proposed an analytical model to calculate SIF for single hole-edge crack in DBTALPUA with hole under tension loading. Comparison of the results obtained through this analytical model and numerical simulation illustrated that the analytical model can rapidly predict the SIF with fine precision.

1989 ◽  
Vol 33 (03) ◽  
pp. 214-220
Author(s):  
Paul C. Xirouchakis ◽  
George N. Makrakis

The behavior of a long elastic strip with an edge crack resting on a liquid foundation is investigated. The faces of the crack are opened by an applied pressure loading. The deformation of the strip is considered within the framework of the linear theory of elasticity assuming plane-stress conditions. Fourier transform techniques are employed to obtain integral expressions for the stresses and displacements. The boundary-value problem is reduced to the solution of a Fredholm integral equation of the second kind. For the particular case of linear pressure loading, the stress-intensity factor is calculated and its dependence is shown on the depth of the crack relative to the thickness of the strip. Application of the present results to the problem of flexure of floating ice strips is discussed.


Author(s):  
Tasos Kostrivas ◽  
Lee Smith ◽  
Mike Gittos

Failure of critical titanium parts, including some offshore components, has drawn attention to delayed cracking in Ti-6Al-4V alloys, but, given good design and alloy variant selection, such failures are avoidable. Delayed cracking, or sustained load cracking (SLC), can occur at low to moderate temperature (approximately: −50 to 200°C), depending on the titanium alloy and condition. Appropriate testing methods are required to generate stress intensity threshold values (KISLC) that can be incorporated into the design of titanium structures and recommendations are needed on the optimum chemistry and microstructure for greatest resistance. In the present work threshold stress intensity factor data (KISLC) were generated for Ti-6Al-4V alloy sheet, forgings, pipe and weldments using two different rising stress intensity factor test methods. It is concluded that material with a beta-annealed microstructure and low oxygen content (i.e. extra-low interstitial material such as ASTM Grades 23 and 29), has high resistance to SLC and that weld metal and transformed heat-affected zone also perform well, before and after postweld heat treatment, provided interstitial element pick-up during welding is prevented. Purchasing material in a general ‘mill annealed’ condition is not recommended without specifying acceptable microstructures. Further refinement of test method is also recommended for defining KISLC.


2019 ◽  
Vol 2019.72 (0) ◽  
pp. G21
Author(s):  
Shunsuke ASHIKARI ◽  
Shunichi HARAGA ◽  
Kazuhiro ODA ◽  
Noriko TSUTSUMI

2019 ◽  
Vol 2019 (0) ◽  
pp. OS1415
Author(s):  
Shunsuke ASHIKARI ◽  
Tomoyuki MASUNO ◽  
Kazuhiro ODA ◽  
Noriko TSUTSUMI

Sign in / Sign up

Export Citation Format

Share Document