scholarly journals Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5551
Author(s):  
Cécile Dubois ◽  
Isaline Herrada ◽  
Philippe Barthe ◽  
Christian Roumestand

High-hydrostatic pressure is an alternative perturbation method that can be used to destabilize globular proteins. Generally perfectly reversible, pressure exerts local effects on regions or domains of a protein containing internal voids, contrary to heat or chemical denaturant that destabilize protein structures uniformly. When combined with NMR spectroscopy, high pressure (HP) allows one to monitor at a residue-level resolution the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. The use of HP-NMR has long been hampered by technical difficulties. Owing to the recent development of commercially available high-pressure sample cells, HP-NMR experiments can now be routinely performed. This review summarizes recent advances of HP-NMR techniques for the characterization at a quasi-atomic resolution of the protein folding energy landscape.

2015 ◽  
Vol 142 (8) ◽  
pp. 085101 ◽  
Author(s):  
Sang Beom Kim ◽  
Carmeline J. Dsilva ◽  
Ioannis G. Kevrekidis ◽  
Pablo G. Debenedetti

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 656
Author(s):  
Vincent Van Deuren ◽  
Yin-Shan Yang ◽  
Karine de Guillen ◽  
Cécile Dubois ◽  
Catherine Anne Royer ◽  
...  

Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CH groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CH, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CH when compared to amide groups.


2017 ◽  
Vol 147 (6) ◽  
pp. 064108 ◽  
Author(s):  
S. Orioli ◽  
S. a Beccara ◽  
P. Faccioli

Sign in / Sign up

Export Citation Format

Share Document