scholarly journals A Model Study of a Homogeneous Light-Water Thorium Reactor

Physics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 171-183
Author(s):  
Carlo Canepa

This work presents a computational study of a 232 Th -based homogeneous light-water reactor. Thorium reactors have been proposed as an alternative to the uranium fuel cycle since they exploit both the availability of thorium and its ability to afford fissile uranium isotopes by a sequence of neutron captures. Besides 233 U , as a result of the neutron captures, a significant amount of 234 U (36.3%) and 6.46% of 235 U are formed in the reactor under study. More importantly, the proposed simulation points out the possibility of a continuous withdrawal of the uranium isotopes without compromising the criticality and the power output of the reactor. This withdrawal affords the fissile material for the startup of reactors other than the first one, which requires a one-time only limited amount of fissile material. The significant molar fraction of the 234 U (0.17) in the extracted fuel does not pose a limitation on weapon proliferation, as a consequence of its high fission cross section for high-energy neutrons.

Author(s):  
Deyang Cui ◽  
Xiangzhou Cai ◽  
Jingen Chen ◽  
Chenggang Yu

Molten salt reactor (MSR), as one of the six systems selected by the Generation IV International Forum (GIF) for future advantaged reactors research and development (R&D), has excellent performances such as high inherent safety, desirable breeding capacity, low radioactive waste production, flexible fuel cycle and non-proliferation. Meanwhile, thorium, as an appealing alternative nuclear fuel to uranium, is more abundant than uranium in the earth’s crust. Realization of thorium fuel cycle in MSRs will greatly contribute to sustainable energy supply for global development. The objective of this paper is to analyze and evaluate thorium fuel utilization in a program in which MSRs are expected to be developed step by step. The program can be described as follows: 1 The first stage is a converter reactor fueled with low enriched uranium. With limited processing based on current chemical partitioning technology and fuel-feeding techniques in the generation-I MSR; 2 The second stage is a 233U production reactor. By using the enriched uranium, it can produce 233U which does not exist in nature; 3 The third stage is a thorium breeding reactor. It is a breeder reactor with Th/233U fuel cycle, and sustainable thorium utilization for energy production is expected to be eventually realized. By employing an in-house developed tool based on SCALE6.1, the performance of MSR fueled with low enriched uranium is firstly assessed. It is found that MSR is attractive regarding conversion ratio when compared with light water reactors. Then we illustrate the feasibility of 233U production in MSR. Enriched uranium with two enrichments are used as driver fuels to start MSR and produce 233U. The results show that 233U production can be achieved and the double time is about 79.1 years for 20% enriched uranium and 28.3 years for 60% enriched uranium. Finally, the performance of MSR based on pure Th/233U fuel cycle is evaluated. It is found that breeding fissile material is possible in MSR and the breeding ratio is desirable (1.049). Comparison of the three-stage MSRs is also conducted and the results indicate that the resource utilization efficiency is much higher in stage-III than that in the first two stages and much less minor actinides is produced in MSR operating on Th/233U fuel cycle than that in traditional light water reactor.


2020 ◽  
Vol 299 ◽  
pp. 447-451 ◽  
Author(s):  
V.G. Gusev ◽  
A.V. Sobolkov ◽  
A.V. Aborkin

The paper presents the results of a computational study of the influence of the geometry of the working chamber on the energy-force interaction of grinding bodies in the process of the mixture processing in a planetary mill. The method of computer simulation, using the software system, based on the ideology of discrete elements, shows the high efficiency of processing in a planetary mill, using a working chamber with a square-shaped cavity. The values of the factors that have a dominant influence on the mechanical processing of the charge are determined. A comparison with the process of processing in the working chamber of the traditional cylindrical shape is made. The research results will be used in the appointment of large-size charge processing regimes that provide a high-energy grinding process.


Author(s):  
Brandon Bethers ◽  
Yang Yang

Abstract Cuttlebone, the internal shell structure of a cuttlefish, presents a unique labyrinthian wall-septa design that promotes high energy absorption, porosity, and damage tolerance. This structure offers us an inspiration for the design of lightweight and strong structures for potential applications in mechanical, aerospace and biomedical engineering. However, the complexity of the cuttlebones structural design makes its fabrication by traditional manufacturing techniques not feasible. The advances in additive manufacturing (3D printing) make highly complex structures like cuttlebone possible to manufacture. In this work, the authors sought to establish comparative data between cuttlebone structures and some common support structures used in additive manufacturing. The structures compared to cuttlebone in this work include the cubic, honeycomb and triangular support structures. This was accomplished by using CAD modeling and simulation software. This study found that the cuttlefish structures had higher average stress values than the others but similar average strain values. This leads to a higher modulus of elasticity for the cuttlebone structures. The data suggests that further research into cuttlebone structures could produce future designs that improve upon the current well-established additive manufacturing support structures. Further study will be performed for the 3D printing of cuttlebone inspired structures by using various types of materials, such as soft and rigid polymers, functional ceramics, composites, and metals.


Sign in / Sign up

Export Citation Format

Share Document