scholarly journals Instability of Traveling Pulses in Nonlinear Diffusion-Type Problems and Method to Obtain Bottom-Part Spectrum of Schrödinger Equation with Complicated Potential

Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 715-727
Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically, the problem is reduced to the calculation of the “energy” of the ground state in the Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.

Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically the problem is reduced to the calculation of the "energy" of the ground state in Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.


Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically the problem is reduced to the calculation of the "energy" of the ground state in Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.


2014 ◽  
Vol 14 (4) ◽  
Author(s):  
Xiang-dong Fang ◽  
Zhi-qing Han

AbstractIn this paper we are concerned with the quasilinear Schrödinger equation−Δu + V(x)u − Δ(uwhere N ≥ 3, 4 < p < 4N/(N − 2), and V(x) and q(x) go to some positive limits V


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


Sign in / Sign up

Export Citation Format

Share Document