nonlinear diffusion equations
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 3)

Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 715-727
Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically, the problem is reduced to the calculation of the “energy” of the ground state in the Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.


Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically the problem is reduced to the calculation of the "energy" of the ground state in Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.


Author(s):  
Michael I. Tribelsky

The instability of traveling pulses in nonlinear diffusion problems is inspected on the example of Gunn domains in semiconductors. Mathematically the problem is reduced to the calculation of the "energy" of the ground state in Schrödinger equation with a complicated potential. A general method to obtain the bottom-part spectrum of such equations based on the approximation of the potential by square wells is proposed and applied. Possible generalization of the approach to other types of nonlinear diffusion equations is discussed.


Sign in / Sign up

Export Citation Format

Share Document