scholarly journals Knitted Coil for Inductive Plethysmography

Proceedings ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 2
Author(s):  
Fobelets

Knitting a thin insulated metal wire simultaneously with elastic yarn in the round creates a coil with a self-inductance close to a wound coil. This knit is flexible and can be stretched, allowing the diameter of the coil to change, resulting in a change of its self-inductance. It is found that rib stitch gives the highest inductance but stocking stitch gives the highest variation of self-inductance with changing diameter. The feasibility of using the knitted coil for inductive plethysmography is demonstrated by simulated breathing in a baby jumper with knitted coils.

2001 ◽  
Vol 28 (10) ◽  
pp. 937-942 ◽  
Author(s):  
F. Teraoka ◽  
M. Nakagawa ◽  
J. Takahashi
Keyword(s):  

2016 ◽  
Vol 136 (9) ◽  
pp. 733-740 ◽  
Author(s):  
Shin-ichi Tanaka ◽  
Masashi Kotari ◽  
Tomo Tadokoro ◽  
Yutaka Goda
Keyword(s):  

1993 ◽  
Author(s):  
David M. Caretti ◽  
Paul V. Pullen ◽  
Leslie A. Premo ◽  
Wade D. Kuhlmann

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3723
Author(s):  
Barah Ahn ◽  
Vikram C. Patil ◽  
Paul I. Ro

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.


Author(s):  
Dina Becker ◽  
Steffen Boley ◽  
Rocco Eisseler ◽  
Thomas Stehle ◽  
Hans-Christian Möhring ◽  
...  

AbstractThis paper describes the interdependence of additive and subtractive manufacturing processes using the production of test components made from S Al 5356. To achieve the best possible part accuracy and a preferably small wall thickness already within the additive process, a closed loop process control was developed and applied. Subsequent machining processes were nonetheless required to give the components their final shape, but the amount of material in need of removal was minimised. The effort of minimising material removal strongly depended on the initial state of the component (wall thickness, wall thickness constancy, microstructure of the material and others) which was determined by the additive process. For this reason, knowledge of the correlations between generative parameters and component properties, as well as of the interdependency between the additive process and the subsequent machining process to tune the former to the latter was essential. To ascertain this behaviour, a suitable test part was designed to perform both additive processes using laser metal wire deposition with a closed loop control of the track height and subtractive processes using external and internal longitudinal turning with varied parameters. The so manufactured test parts were then used to qualify the material deposition and turning process by criteria like shape accuracy and surface quality.


Sign in / Sign up

Export Citation Format

Share Document