scholarly journals Effect of Integrating Metal Wire Mesh with Spray Injection for Liquid Piston Gas Compression

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3723
Author(s):  
Barah Ahn ◽  
Vikram C. Patil ◽  
Paul I. Ro

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.

Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
B. Glezer

The heat transfer enhancement in cooling passages with dimpled (concavity imprinted) surface can be effective for use in heat exchangers and various hot section components (nozzle, blade, combustor liner, etc.), as it provides comparable heat transfer coefficients with considerably less pressure loss relative to protruding ribs. Heat transfer coefficients and friction factors were experimentally investigated in rectangular channels which had concavities (dimples) on one wall. The heat transfer coefficients were measured using a transient thermochromic liquid crystal technique. Relative channel heights (H/d) of 0.37, 0.74, 1.11 and 1.49 were investigated in a Reynolds number range from 12000 to 60000. The heat transfer enhancement (NuHD) on the dimpled wall was approximately constant at a value of 2.1 times that (Nusm) of a smooth channel over 0.37≤H/d≤1.49 in the thermally developed region. The heat transfer enhancement ratio Nu¯HD/Nusm was invariant with Reynolds number. The friction factors (f) in the aerodynamically fully developed region were consistently measured to be around 0.0412 (only 1.6 to 2.0 times that of a smooth channel). The aerodynamic entry length was comparable to that of a typical turbulent flow (Xo/Dh = 20), unlike the thermal entry length on dimpled surface which was much shorter (xo /Dh<9.8). The thermal performance Nu¯HD/Nusm/f/fsm1/3≅1.75 of dimpled surface was superior to that 1.16<Nu¯HD/Nusm/f/fsm1/3<1.60 of continuous ribs, demonstrating that the heat transfer enhancement with concavities can be achieved with a relatively low-pressure penalty. Neither the heat transfer coefficient distribution nor the friction factor exhibited a detectable effect of the channel height within the studied relative height range (0.37≤H/d≤1.49).


2000 ◽  
Vol 122 (2) ◽  
pp. 307-313 ◽  
Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
B. Glezer

The heat transfer enhancement in cooling passages with dimpled (concavity imprinted) surface can be effective for use in heat exchangers and various hot section components (nozzle, blade, combustor liner, etc.), as it provides comparable heat transfer coefficients with considerably less pressure loss relative to protruding ribs. Heat transfer coefficients and friction factors were experimentally investigated in rectangular channels which had concavities (dimples) on one wall. The heat transfer coefficients were measured using a transient thermochromic liquid crystal technique. Relative channel heights H/d of 0.37, 0.74, 1.11, and 1.49 were investigated in a Reynolds number range from 12,000 to 60,000. The heat transfer enhancement NuHD on the dimpled wall was approximately constant at a value of 2.1 times that Nusm of a smooth channel over 0.37⩽H/d/⩽1.49 in the thermally developed region. The heat transfer enhancement ratio Nu¯HD/Nusm was invariant with Reynolds number. The friction factors (f) in the aerodynamically fully developed region were consistently measured to be around 0.0412 (only 1.6 to 2.0 times that of a smooth channel). The aerodynamic entry length was comparable to that of a typical turbulent flow xo/Dh=20, unlike the thermal entry length on dimpled surface which was much shorter xo/Dh<9.8. The thermal performance Nu¯HD/Nusm/f/fsm1/3≅1.75 of dimpled surface was superior to that 1.16<NuHD/Nusm/f/fsm1/3<1.60 of continuous ribs, demonstrating that the heat transfer enhancement with concavities can be achieved with a relatively low-pressure penalty. Neither the heat transfer coefficient distribution nor the friction factor exhibited a detectable effect of the channel height within the studied relative height range 0.37⩽H/d⩽1.49.[S0742-4795(00)02802-7]


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


Author(s):  
Wei Li ◽  
Xiaoyu Wu ◽  
Zhong Luo

This paper reports an experimental study on falling film evaporation of water on 6-row horizontal configured tube bundles in a vacuum. Three types of configured tubes, Turbo-CAB-19fpi and −26fpi, Korodense, including smooth tubes for reference, were tested in a range of film Reynolds number from about 10 to 110. Results show that as the falling film Reynolds number increases, falling film evaporation goes from tubes partial dryout regime to fully wet regime; the mean heat transfer coefficients reach peak values in the transition point. Turbo-CAB tubes have the best heat transfer enhancement of falling film evaporation in both regimes, but Korodense tubes’ overall performances are better when tubes are fully wet. The inlet temperature of heating water has hardly any effects on the heat transfer, but the evaporation pressure has controversial effects. A correlation with errors within 10% was also developed to predict the heat transfer enhancement capacity.


Author(s):  
Longzhong Huang ◽  
Terrence Simon ◽  
Min Zhang ◽  
Youmin Yu ◽  
Mark North ◽  
...  

A synthetic jet is an intermittent jet which issues through an orifice from a closed cavity over half of an oscillation cycle. Over the other half, the flow is drawn back through the same orifice into the cavity as a sink flow. The flow is driven by an oscillating diaphragm, which is one wall of the cavity. Synthetic jets are widely used for heat transfer enhancement since they are effective in disturbing and thinning thermal boundary layers on surfaces being cooled. They do so by creating an intermittently-impinging flow and by carrying to the hot surface turbulence generated by breakdown of the shear layer at the jet edge. The present study documents experimentally and computationally heat transfer performance of an array of synthetic jets used in a heat sink designed for cooling of electronics. This heat sink is comprised of a series of longitudinal fins which constitute walls of parallel channels. In the present design, the synthetic jet flow impinges on the tips of the fins. In the experiment, one channel of a 20-channel heat sink is tested. A second flow, perpendicular to the jet flow, passes through the channel, drawn by a vacuum system. Surface- and time-averaged heat transfer coefficients for the channel are measured, first with just the channel flow active then with the synthetic jets added. The purpose is to assess heat transfer enhancement realized by the synthetic jets. The multiple synthetic jets are driven by a single diaphragm which, in turn, is activated by a piezoelectrically-driven mechanism. The operating frequency of the jets is 1250 Hz with a cycle-maximum jet velocity of 50 m/s, as measured with a miniature hot-film anemometer probe. In the computational portion of the present paper, diaphragm movement is driven by a piston, simulating the experimental conditions. The flow is computed with a dynamic mesh using the commercial software package ANSYS FLUENT. Computed heat transfer coefficients show a good match with experimental values giving a maximum difference of less than 10%. The effects of amplitude and frequency of the diaphragm motion are documented. Changes in heat transfer due to interactions between the synthetic jet flow and the channel flow are documented in cases of differing channel flow velocities as well as differing jet operating conditions. Heat transfer enhancement obtained by activating the synthetic jets can be as large as 300% when the channel flow is of a low velocity compared to the synthetic jet peak velocity (as low as 4 m/s in the present study).


Author(s):  
Rongguang Jia ◽  
Arash Saidi ◽  
Bengt Sunde´n

Experimental studies have revealed that both downstream and upstream pointing V-shaped ribs result in better heat transfer enhancement than transverse straight ribs of the same geometry. Secondary flows induced by the angled ribs are believed to be responsible for this higher heat transfer enhancement. Further investigations are needed to understand this. In the present study, the heat and fluid flow in V-shaped-ribbed ducts is numerically simulated by a multi-block 3D solver, which is based on solving the Navier-Stokes and energy equations in conjunction with a low-Reynolds number k-ε turbulence model. The Reynolds turbulent stresses are computed with an explicit algebraic stress model (EASM), while turbulent heat fluxes are calculated with a simple eddy diffusivity model (SED). Firstly, the simulation results of transverse straight ribs are validated against the experimental data, for both velocity and heat transfer coefficients. Then, the results of different rib angles (45° and 90°) and Reynolds number (15,000–30,000) are compared to determine the goodness of different rib orientations. Detailed velocity and thermal field results have been used to explain the effects of the inclined ribs and the mechanisms of heat transfer enhancement.


Author(s):  
M. A. Akhavan-Behabadi ◽  
M. Ghazvini ◽  
E. Rasouli

In this study, the effect of adding nanodiamond powder as an additive to engine oil on laminar flow heat transfer enhancement and pressure drop increasing is experimentally investigated. The plain and microfin tubes were used as the test sections and were heated by an electrical coil heater to produce constant heat fluxes. Thermal conductivity and heat capacity of nanofluids were measured for different volume fractions and temperatures. Convection heat transfer coefficients and Nusselt numbers of nanofluids were obtained for different nanoparticle concentrations as well as various Peclet and Reynolds numbers. Experimental results show the enhancement of heat transfer due to the nanoparticles presence. Furthermore, the effect of particle concentration on pressure drop was studied for different heat fluxes. Finally, the performance evaluation of both nanofluid and microfin tube from the point view of heat transfer enhancement and pressure drop increasing is done.


Author(s):  
M. K. Chyu

The heat transfer distributions for flow passing through a two-pass (one-turn) and a three-pass (two-turn) passages with 180-degree sharp turns are studied by using the analogous naphthalene mass transfer technique. Both passages have square cross-section and length-to-height ratio of 8. The passage surface, including top wall, side walls and partition walls, is divided into 26 segments for the two-pass passage and 40 segments for the three-pass passage. Mass transfer results are presented for each segment along with regional and overall averages. The very non-uniform mass transfer coefficients measured around a sharp 180-degree turn exhibit the effects of flow separation, reattachment and impingement, in addition to secondary flows. Results of the three-pass passage indicate that heat transfer characteristics around the second turn is virtually the same as that around the first turn. This may imply that, in a multiple-pass passage, heat transfer at the first turn has already reached the thermally developed (periodic) condition. Over the entire two-pass passage, the heat transfer enhancement induced by the single-turn is about 45% to 65% of the fully developed values in a straight channel. Such a heat transfer enhancement decreases with an increase in Reynolds number. In addition, overall heat transfer of the three-pass passage is approximately 15% higher than that of the two-pass one. This 15% increase appears to be Reynolds number independent. The pressure loss induced by the sharp turns is found to be very significant. Within the present testing range, the pressure loss coefficient for both passages varies significantly with the Reynolds number.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Hulin Huang ◽  
Bo Li

Due to the magnetohydrodynamic (MHD) effect, which degrades heat transfer coefficients by pulsation suppression of the external magnetic field, on the electrically conducting flow, the wall with nonuniform electrical conductivity is employed in a MHD-flow system for heat transfer enhancement. The nonuniform electrical conductivity distribution of the channel wall could create alternate Lorentz forces along the spanwise direction, which can effectively produce flow disturbance, promote mixture, reduce the thickness of the boundary layer, and enhance heat transfer. So, the heat transfer performances enhanced by some conducting strips aligned with the mean flow direction on the insulating wall for free surface MHD flow are simulated numerically in this paper. The flow behaviors, heat transfer coefficients, friction factors, and pressure drops are presented under different Hartmann numbers. Results show that in the range of Hartmann numbers 30≤Ha≤100, the wall with nonuniform conductivity can achieve heat transfer enhancements (Nu/Nu0) of about 1.2–1.6 relative to the insulating wall, with negligible friction augmentation. This research indicates that the modules with three or five conducting strips can obtain better enhancement effect in our research. Particularly, the heat transfer augmentation increases monotonically with increasing Hartmann numbers. Therefore, the enhancement purpose for high Hartmann number MHD flow is marked, which may remedy the depressing heat transfer coefficients by the MHD effect.


2007 ◽  
Vol 129 (11) ◽  
pp. 1611-1615 ◽  
Author(s):  
H. S. Ahn ◽  
S. W. Lee ◽  
S. C. Lau

Experiments were conducted to determine the average heat transfer coefficients on three wall segments between blockages with holes in a wide rectangular channel. Eight different configurations of the holes in the blockages—two diameters and four aspect ratios of the holes—were examined. The pressure drops across the blockages were also measured. The results showed that the elongated holes in the blockages in this study enhanced more heat transfer than the round holes, but they also caused larger pressure drops across the blockages.


Sign in / Sign up

Export Citation Format

Share Document