scholarly journals A Novel Direction-of-Arrival Estimation via Phase Retrieval with Unknown Sensor Gain-and-Phase Errors

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2701 ◽  
Author(s):  
Lingwen Zhang ◽  
Siliang Wu ◽  
Ao Guo ◽  
Wenkao Yang

In signal array processing, high-resolution direction-of-arrival (DOA) estimation algorithms work well on the assumption that the system models are perfect. However, in practicality, there are imperfect system models in which sensor gain-and-phase errors are considered. In this paper, we propose a novel framework that can effectively solve direction-of-arrival estimation tasks in the presence of sensor gain-and-phase errors. In contrast to existing approaches based on phase retrieval, our method eliminates gain errors by using the compensated covariance matrix. Meanwhile, we propose a data preprocessing method by taking only one column of the compensated covariance matrix without losing any magnitude information. Additionally, the phase retrieval problem is formed by the proposed data preprocessing method. Furthermore, the phase retrieval problem is solved by the recently proposed sparse feasible point pursuit algorithm, and DOA estimates are obtained. To prevent the model from ambiguities, we employ the known DOA to place reference sources. Numerical results show that the proposed scheme achieves better performance compared to state-of-the-art approaches.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4403
Author(s):  
Ji Woong Paik ◽  
Joon-Ho Lee ◽  
Wooyoung Hong

An enhanced smoothed l0-norm algorithm for the passive phased array system, which uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are limitations in the resolution and the DOA estimation performance, since a single sample is used. If multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce the number of optimization variables when using multiple snapshots of the received signal. A cost function and a new null-space projection term of the sparse recovery for the proposed scheme are presented. In order to verify the performance of the proposed algorithm, we present the simulation results and the experimental results based on the measured data.


Sign in / Sign up

Export Citation Format

Share Document