scholarly journals Piezoelectric Sensing Techniques in Structural Health Monitoring: A State-of-the-Art Review

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3730 ◽  
Author(s):  
Pengcheng Jiao ◽  
King-James I. Egbe ◽  
Yiwei Xie ◽  
Ali Matin Nazar ◽  
Amir H. Alavi

Recently, there has been a growing interest in deploying smart materials as sensing components of structural health monitoring systems. In this arena, piezoelectric materials offer great promise for researchers to rapidly expand their many potential applications. The main goal of this study is to review the state-of-the-art piezoelectric-based sensing techniques that are currently used in the structural health monitoring area. These techniques range from piezoelectric electromechanical impedance and ultrasonic Lamb wave methods to a class of cutting-edge self-powered sensing systems. We present the principle of the piezoelectric effect and the underlying mechanisms used by the piezoelectric sensing methods to detect the structural response. Furthermore, the pros and cons of the current methodologies are discussed. In the end, we envision a role of the piezoelectric-based techniques in developing the next-generation self-monitoring and self-powering health monitoring systems.

2020 ◽  
pp. 147592172091712 ◽  
Author(s):  
Bárbara M Gianesini ◽  
Nicolás E Cortez ◽  
Rothschild A Antunes ◽  
Jozue Vieira Filho

Structural health monitoring systems are employed to evaluate the state of structures to detect damage, bringing economical and safety benefits. The electromechanical impedance technique is a promising damage detection tool since it evaluates structural integrity by only measuring the electrical impedance of piezoelectric transducers bonded to structures. However, in real-world applications, impedance-based damage detection systems exhibit strong temperature dependence; therefore, variations associated with temperature changes may be confused as damage. In this article, the temperature effect on the electrical impedance of piezoelectric ceramics attached to structures is analyzed. Besides, a new methodology to compensate for the temperature effect in the electromechanical impedance technique is proposed. The method is very general since it can be applied to nonlinear (polynomial) temperature and/or frequency dependences observed on the horizontal and vertical shifts of the impedance signatures. A computer algorithm that performs the compensation was developed, which can be easily incorporated into real-time damage detection systems. This compensation technique is applied successfully to two aluminum beams and one steel pipe, minimizing the effect of temperature variations on damage detection structural health monitoring systems in the temperature range from −40°C to 80°C and the frequency range from 10 to 90 kHz.


Sign in / Sign up

Export Citation Format

Share Document