scholarly journals Numerical Solution of Nonlinear Schrödinger Equation with Neumann Boundary Conditions Using Quintic B-Spline Galerkin Method

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.

2009 ◽  
Vol 8 (2) ◽  
pp. 79 ◽  
Author(s):  
E. C. Romão ◽  
M. D. De Campos ◽  
J. A. Martins ◽  
L. F. M. De Moura

This paper presents the numerical solution by the Galerkin Finite Element Method, on the three-dimensional Laplace and Helmholtz equations, which represent the heat diffusion in solids. For the two applications proposed, the analytical solutions found in the literature review were used in comparison with the numerical solution. The results analysis was made based on the the L2 Norm (average error throughout the domain) and L¥ Norm (maximum error in the entire domain). The two application results, one of the Laplace equation and the Helmholtz equation, are presented and discussed in order to to test the efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document