contact problem
Recently Published Documents


TOTAL DOCUMENTS

1932
(FIVE YEARS 275)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 217 ◽  
pp. 112728
Author(s):  
Amal Alphonse ◽  
Carlos N. Rautenberg ◽  
José Francisco Rodrigues
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 164-170
Author(s):  
Sergiu Spinu ◽  
◽  

Various biomedical components, such as dental crowns and hip prostheses, data processing devices, and other numerous mechanical components that transmit load through a mechanical contact, may benefit from a tri-layer design. The coating may be optimized for wear protection and corrosion prevention, whereas the intermediate layer provides increased adhesion between the outer layer and the substrate, and confines the crack propagation. The solution to the contact problem involving tri-layered materials can be pursued numerically with the finite element or the boundary element methods, but semi-analytical techniques benefitting from the efficiency of the fast Fourier transform (FFT) technique have also been successfully applied. At the heart of the FFT-assisted approach lie the frequency response functions (FRFs), which are analytical solutions for fundamental problems of elasticity such as the Boussinesq and Cerruti problems, but expressed in the frequency domain. Considering recent efforts and results in application of FFT to convolution calculations in contact problems, the displacement arising in a tri-layer configuration is computed in the frequency domain, and the contact problem is subsequently solved in the space domain using a state-of-the-art algorithm based on the conjugate gradient method. The method relies on the FRFs derived in the literature for tri-layered materials, and the efficiency and accuracy of computations in the frequency domain is assured by using the Discrete Convolution Fast Fourier Technique (DCFFT) with influence coefficients derived from the FRFs. The computer program reproduces well-known results for bi-layered materials. Numerical simulations are performed for various configurations in which the elastic properties of the layers, as well as the frictional coefficient, are varied. By using the newly advanced simulation technique, design recommendations may be advanced for the optimal configuration of tri-layered materials under contact load.


2021 ◽  
Vol 13 (3) ◽  
pp. 22-28
Author(s):  
Delia Cerlinca ◽  
◽  
Sergiu Spinu ◽  
◽  

Machined surfaces can be described by heights and wavelengths of the surface asperities that show a statistical variation. Considering that a regular wavy surface with a sinusoidal profile is the crudest model for a rough surface, studying the contact of regular wavy surfaces is a good approximation for the contact of nominally flat surfaces. Such contact problems exhibit periodicity that can be simulated with the aid of computational techniques derived for contact mechanics in the frequency domain. The displacement calculation, which is a necessary step in the resolution of the contact problem, is mathematically a convolution product that can be calculated in the frequency domain with increased computational efficiency. The displacement induced by a unit surface load can be expressed in the frequency domain by the frequency response functions, which are counterparts of the space domain solutions to half-space fundamental problems such as the Boussinesq problem. The displacement induced by a periodic pressure distribution can be computed by executing the convolution product between the frequency response function and pressure on a single period. It should be noted that the convolution calculation in the spectral domain implies that the contributions of all neighbouring pressure periods are accounted for. The need to treat numerically only a single period results in remarkable computational efficiency, allowing for high density meshes that can capture the essential features of any textured real surface. The displacement calculation promotes the solution of the contact problem by an iterative approach. The advanced method is benchmarked against existing analytical solutions for the 3D contact of surfaces possessing two-dimensional waviness. This essentially deterministic model, supported by a direct numerical solution that can be obtained for samples of real rough surfaces, presents itself as a worthy alternative to the existing statistical models for rough contact interaction.


2021 ◽  
Vol 13 (2) ◽  
pp. 124-129
Author(s):  
Sergiu Spinu ◽  
◽  

The line-contact is a particular type of contact with a contact length much greater than its width. Such contact scenarios can be treated in the frame of a two-dimensional plane-strain problem if the contacting surfaces can be considered nominally smooth. However, surface irregularities inherent to any manufacturing technique lead to a discontinuous contact area that differs from the one derived on the basis of the smooth profile assumption. It is therefore tantalizing to pursue the solution of a line-contact problem using an intrinsically three-dimensional (3D) model, which can only be numerical due to lack of general analytical solutions in contact mechanics. Considering the geometry of the line-contact, a major challenge in its numerical modelling is that the expected contact area is orders of magnitude larger in one direction compared to the other. This may lead to an unreasonably large number of grids in the contact length direction, which translates to a prohibitive computational burden. An alternative approach, employed in this paper, is to treat the line-contact as non-periodic in the contact width direction, but periodic in the contact length direction, with a period equal to the window required to capture and replicate the surface specific texture. This periodicity encourages the contact problem solution by spectral methods based on the fast Fourier transform (FFT) algorithm. Based on this idea, two methods are derived in this paper from the existing Discrete Convolution Fast Fourier Transform (DCFFT) technique, which was previously developed for purely non-periodic contact problems. A first algorithm variant employs a special padding technique for pressure, whereas a second one mimics the contribution of multiple pressure periods by summation of the influence coefficients over a domain a few times larger than the target domain. Both techniques are validated against the existing analytical Hertz solution for the line-contact and a good agreement is found. The advanced methods seem well adapted to the simulation of contact problems that can be approximated as periodic in one direction and non-periodic in the other.


2021 ◽  

Abstract Many of the engineering applications have faced the delicate contact problem in the area close to the forces where it is very difficult to experimentally carry out various measurements and draw important conclusions on the condition of the contact points. In this paper the forced state in the vicinity of the forces for the half-plane will be studied. Furthermore, the qualities displayed by the half-plane under the action of normal forces, tangential forces and the moment caused by a pair of forces will be analyzed, as well as changes in the elastic characteristics for the forced plane state and the deformed plane state.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 115
Author(s):  
Laith A. Sabri ◽  
Nadica Stojanović ◽  
Adolfo Senatore ◽  
Muhsin Jaber Jweeg ◽  
Azher M. Abed ◽  
...  

We present an investigation through numerical analysis (FEM) of the solution of the contact problem in friction clutch systems during engagement manoeuver. The case of high contact pressure between the sliding elements of a clutch system (flywheel, friction clutch and pressure plate) has been also considered. A finite element model of a dry friction clutch system (single disc) to estimate the distributions of the contact pressure between the contact elements of the clutch system under different working conditions has been developed and the main findings are discussed. Furthermore, the effect of modules of elasticity (contact stiffness) on the distribution of contact pressure of the mating surfaces was investigated. Also, the results encompass the deformations of the contacting surfaces for different cases. This work could provide a fundamental intermediate step to obtain a partial solution to the thermos-elastic problem in order to compute the thermal-driven deformations and stresses in the automotive clutches and brakes under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document