scholarly journals Inference about the Ratio of the Coefficients of Variation of Two Independent Symmetric or Asymmetric Populations

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 824 ◽  
Author(s):  
Zhang Yue ◽  
Dumitru Baleanu

Coefficient of variation (CV) is a simple but useful statistical tool to make comparisons about the independent populations in many research areas. In this study, firstly, we proposed the asymptotic distribution for the ratio of the CVs of two separate symmetric or asymmetric populations. Then, we derived the asymptotic confidence interval and test statistic for hypothesis testing about the ratio of the CVs of these populations. Finally, the performance of the introduced approach was studied through simulation study.

2021 ◽  
Vol 50 (1) ◽  
pp. 261-278
Author(s):  
Warisa Thangjai ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The coefficient of variation is widely used as a measure of data precision. Confidence intervals for a single coefficient of variation when the data follow a normal distribution that is symmetrical and the difference between the coefficients of variation of two normal populations are considered in this paper. First, the confidence intervals for the coefficient of variation of a normal distribution are obtained with adjusted generalized confidence interval (adjusted GCI), computational, Bayesian, and two adjusted Bayesian approaches. These approaches are compared with existing ones comprising two approximately unbiased estimators, the method of variance estimates recovery (MOVER) and generalized confidence interval (GCI). Second, the confidence intervals for the difference between the coefficients of variation of two normal distributions are proposed using the same approaches, the performances of which are then compared with the existing approaches. The highest posterior density interval was used to estimate the Bayesian confidence interval. Monte Carlo simulation was used to assess the performance of the confidence intervals. The results of the simulation studies demonstrate that the Bayesian and two adjusted Bayesian approaches were more accurate and better than the others in terms of coverage probabilities and average lengths in both scenarios. Finally, the performances of all of the approaches for both scenarios are illustrated via an empirical study with two real-data examples.


2020 ◽  
Vol 8 (1) ◽  
pp. 11-21
Author(s):  
S. M. Yaroshko ◽  
◽  
M. V. Zabolotskyy ◽  
T. M. Zabolotskyy ◽  
◽  
...  

The paper is devoted to the investigation of statistical properties of the sample estimator of the beta coefficient in the case when the weights of benchmark portfolio are constant and for the target portfolio, the global minimum variance portfolio is taken. We provide the asymptotic distribution of the sample estimator of the beta coefficient assuming that the asset returns are multivariate normally distributed. Based on the asymptotic distribution we construct the confidence interval for the beta coefficient. We use the daily returns on the assets included in the DAX index for the period from 01.01.2018 to 30.09.2019 to compare empirical and asymptotic means, variances and densities of the standardized estimator for the beta coefficient. We obtain that the bias of the sample estimator converges to zero very slowly for a large number of assets in the portfolio. We present the adjusted estimator of the beta coefficient for which convergence of the empirical variances to the asymptotic ones is not significantly slower than for a sample estimator but the bias of the adjusted estimator is significantly smaller.


Sign in / Sign up

Export Citation Format

Share Document