scholarly journals Volumes of Hyperbolic Three-Manifolds Associated with Modular Links

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1206 ◽  
Author(s):  
Alex Brandts ◽  
Tali Pinsky ◽  
Lior Silberman

Periodic geodesics on the modular surface correspond to periodic orbits of the geodesic flow in its unit tangent bundle PSL 2 ( Z ) ∖ PSL 2 ( R ) . A finite collection of such orbits is a collection of disjoint closed curves in a 3-manifold, in other words a link. The complement of those links is always a hyperbolic 3-manifold, and hence has a well-defined volume. We present strong numerical evidence that, in the case of the set of geodesics corresponding to the ideal class group of a real quadratic field, the volume has linear asymptotics in terms of the total length of the geodesics. This is not the case for general sets of geodesics.

2010 ◽  
Vol 52 (3) ◽  
pp. 575-581 ◽  
Author(s):  
YASUHIRO KISHI

AbstractLet n(≥ 3) be an odd integer. Let k:= $\Q(\sqrt{4-3^n})\)$ be the imaginary quadratic field and k′:= $\Q(\sqrt{-3(4-3^n)})\)$ the real quadratic field. In this paper, we prove that the class number of k is divisible by 3 unconditionally, and the class number of k′ is divisible by 3 if n(≥ 9) is divisible by 3. Moreover, we prove that the 3-rank of the ideal class group of k is at least 2 if n(≥ 9) is divisible by 3.


1992 ◽  
Vol 35 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Christian Friesen

AbstractLet q be a positive power of an odd prime p, and let Fq(t) be the function field with coefficients in the finite field of q elements. Let denote the ideal class number of the real quadratic function field obtained by adjoining the square root of an even-degree monic . The following theorem is proved: Let n ≧ 1 be an integer not divisible by p. Then there exist infinitely many monic, squarefree polynomials, such that n divides the class number, . The proof constructs an element of order n in the ideal class group.


2019 ◽  
Vol 71 (6) ◽  
pp. 1395-1419
Author(s):  
Hugo Chapdelaine ◽  
Radan Kučera

AbstractThe aim of this paper is to study the group of elliptic units of a cyclic extension $L$ of an imaginary quadratic field $K$ such that the degree $[L:K]$ is a power of an odd prime $p$. We construct an explicit root of the usual top generator of this group, and we use it to obtain an annihilation result of the $p$-Sylow subgroup of the ideal class group of $L$.


1983 ◽  
Vol 26 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Philip A. Leonard ◽  
Kenneth S. Williams

Let d(<0) denote a squarefree integer. The ideal class group of the imaginary quadratic field has a cyclic 2-Sylow subgroup of order ≦8 in precisely the following cases (see for example [5] and [6]):where p and q denote primes and g, h, u and v are positive integers. The class number of is denoted by h(d) and in the above cases h(d) = 0(mod 8). For cases (i), (ii) and (iii) the authors [6] have given necessary and sufficient conditions for h(d) to be divisible by 16. In this paper we do the same for case (iv) extending the results of Brown [4].


2015 ◽  
Vol 100 (1) ◽  
pp. 21-32
Author(s):  
ELLIOT BENJAMIN ◽  
C. SNYDER

Using the elements of order four in the narrow ideal class group, we construct generators of the maximal elementary $2$-class group of real quadratic number fields with even discriminant which is a sum of two squares and with fundamental unit of positive norm. We then give a characterization of when two of these generators are equal in the narrow sense in terms of norms of Gaussian integers.


Sign in / Sign up

Export Citation Format

Share Document