scholarly journals Semantic Image Segmentation with Deep Convolutional Neural Networks and Quick Shift

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Sanxing Zhang ◽  
Zhenhuan Ma ◽  
Gang Zhang ◽  
Tao Lei ◽  
Rui Zhang ◽  
...  

Semantic image segmentation, as one of the most popular tasks in computer vision, has been widely used in autonomous driving, robotics and other fields. Currently, deep convolutional neural networks (DCNNs) are driving major advances in semantic segmentation due to their powerful feature representation. However, DCNNs extract high-level feature representations by strided convolution, which makes it impossible to segment foreground objects precisely, especially when locating object boundaries. This paper presents a novel semantic segmentation algorithm with DeepLab v3+ and super-pixel segmentation algorithm-quick shift. DeepLab v3+ is employed to generate a class-indexed score map for the input image. Quick shift is applied to segment the input image into superpixels. Outputs of them are then fed into a class voting module to refine the semantic segmentation results. Extensive experiments on proposed semantic image segmentation are performed over PASCAL VOC 2012 dataset, and results that the proposed method can provide a more efficient solution.

Author(s):  
D. Wittich ◽  
F. Rottensteiner

<p><strong>Abstract.</strong> Domain adaptation (DA) can drastically decrease the amount of training data needed to obtain good classification models by leveraging available data from a source domain for the classification of a new (target) domains. In this paper, we address deep DA, i.e. DA with deep convolutional neural networks (CNN), a problem that has not been addressed frequently in remote sensing. We present a new method for semi-supervised DA for the task of pixel-based classification by a CNN. After proposing an encoder-decoder-based fully convolutional neural network (FCN), we adapt a method for adversarial discriminative DA to be applicable to the pixel-based classification of remotely sensed data based on this network. It tries to learn a feature representation that is domain invariant; domain-invariance is measured by a classifier’s incapability of predicting from which domain a sample was generated. We evaluate our FCN on the ISPRS labelling challenge, showing that it is close to the best-performing models. DA is evaluated on the basis of three domains. We compare different network configurations and perform the representation transfer at different layers of the network. We show that when using a proper layer for adaptation, our method achieves a positive transfer and thus an improved classification accuracy in the target domain for all evaluated combinations of source and target domains.</p>


Sign in / Sign up

Export Citation Format

Share Document