weakly supervised
Recently Published Documents





2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Zhe Jiang ◽  
Wenchong He ◽  
Marcus Stephen Kirby ◽  
Arpan Man Sainju ◽  
Shaowen Wang ◽  

In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy.

2022 ◽  
Vol 109 ◽  
pp. 104615
Enrico Bellocchio ◽  
Francesco Crocetti ◽  
Gabriele Costante ◽  
Mario Luca Fravolini ◽  
Paolo Valigi

2022 ◽  
Vol 239 ◽  
pp. 107860
Yao Xue ◽  
Siming Liu ◽  
Yonghui Li ◽  
Ping Wang ◽  
Xueming Qian

2022 ◽  
Vol 122 ◽  
pp. 108341
Xiaoming Liu ◽  
Quan Yuan ◽  
Yaozong Gao ◽  
Kelei He ◽  
Shuo Wang ◽  

2022 ◽  
Vol 14 (2) ◽  
pp. 339
Paul Berg ◽  
Deise Santana Maia ◽  
Minh-Tan Pham ◽  
Sébastien Lefèvre

Human activities in the sea, such as intensive fishing and exploitation of offshore wind farms, may impact negatively on the marine mega fauna. As an attempt to control such impacts, surveying, and tracking of marine animals are often performed on the sites where those activities take place. Nowadays, thank to high resolution cameras and to the development of machine learning techniques, tracking of wild animals can be performed remotely and the analysis of the acquired images can be automatized using state-of-the-art object detection models. However, most state-of-the-art detection methods require lots of annotated data to provide satisfactory results. Since analyzing thousands of images acquired during a flight survey can be a cumbersome and time consuming task, we focus in this article on the weakly supervised detection of marine animals. We propose a modification of the patch distribution modeling method (PaDiM), which is currently one of the state-of-the-art approaches for anomaly detection and localization for visual industrial inspection. In order to show its effectiveness and suitability for marine animal detection, we conduct a comparative evaluation of the proposed method against the original version, as well as other state-of-the-art approaches on two high-resolution marine animal image datasets. On both tested datasets, the proposed method yielded better F1 and recall scores (75% recall/41% precision, and 57% recall/60% precision, respectively) when trained on images known to contain no object of interest. This shows a great potential of the proposed approach to speed up the marine animal discovery in new flight surveys. Additionally, such a method could be adopted for bounding box proposals to perform faster and cheaper annotation within a fully-supervised detection framework.

2022 ◽  
Xiaofeng Xie ◽  
Chi-Cheng Fu ◽  
Lei Lv ◽  
Qiuyi Ye ◽  
Yue Yu ◽  

AbstractLung cancer is one of the leading causes of cancer-related death worldwide. Cytology plays an important role in the initial evaluation and diagnosis of patients with lung cancer. However, due to the subjectivity of cytopathologists and the region-dependent diagnostic levels, the low consistency of liquid-based cytological diagnosis results in certain proportions of misdiagnoses and missed diagnoses. In this study, we performed a weakly supervised deep learning method for the classification of benign and malignant cells in lung cytological images through a deep convolutional neural network (DCNN). A total of 404 cases of lung cancer cells in effusion cytology specimens from Shanghai Pulmonary Hospital were investigated, in which 266, 78, and 60 cases were used as the training, validation and test sets, respectively. The proposed method was evaluated on 60 whole-slide images (WSIs) of lung cancer pleural effusion specimens. This study showed that the method had an accuracy, sensitivity, and specificity respectively of 91.67%, 87.50% and 94.44% in classifying malignant and benign lesions (or normal). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.9526 (95% confidence interval (CI): 0.9019–9.9909). In contrast, the average accuracies of senior and junior cytopathologists were 98.34% and 83.34%, respectively. The proposed deep learning method will be useful and may assist pathologists with different levels of experience in the diagnosis of cancer cells on cytological pleural effusion images in the future.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262247
Katerina Kikaki ◽  
Ioannis Kakogeorgiou ◽  
Paraskevi Mikeli ◽  
Dionysios E. Raitsos ◽  
Konstantinos Karantzalos

Currently, a significant amount of research is focused on detecting Marine Debris and assessing its spectral behaviour via remote sensing, ultimately aiming at new operational monitoring solutions. Here, we introduce a Marine Debris Archive (MARIDA), as a benchmark dataset for developing and evaluating Machine Learning (ML) algorithms capable of detecting Marine Debris. MARIDA is the first dataset based on the multispectral Sentinel-2 (S2) satellite data, which distinguishes Marine Debris from various marine features that co-exist, including Sargassum macroalgae, Ships, Natural Organic Material, Waves, Wakes, Foam, dissimilar water types (i.e., Clear, Turbid Water, Sediment-Laden Water, Shallow Water), and Clouds. We provide annotations (georeferenced polygons/ pixels) from verified plastic debris events in several geographical regions globally, during different seasons, years and sea state conditions. A detailed spectral and statistical analysis of the MARIDA dataset is presented along with well-established ML baselines for weakly supervised semantic segmentation and multi-label classification tasks. MARIDA is an open-access dataset which enables the research community to explore the spectral behaviour of certain floating materials, sea state features and water types, to develop and evaluate Marine Debris detection solutions based on artificial intelligence and deep learning architectures, as well as satellite pre-processing pipelines.

Sign in / Sign up

Export Citation Format

Share Document