scholarly journals Counting Non-Convex 5-Holes in a Planar Point Set

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Young-Hun Sung ◽  
Sang Won Bae

Let S be a set of n points in the general position, that is, no three points in S are collinear. A simple k-gon with all corners in S such that its interior avoids any point of S is called a k-hole. In this paper, we present the first algorithm that counts the number of non-convex 5-holes in S. To our best knowledge, prior to this work there was no known algorithm in the literature except a trivial brute force algorithm. Our algorithm runs in time O(T+Q), where T denotes the number of 3-holes, or empty triangles, in S and Q that denotes the number of non-convex 4-holes in S. Note that T+Q ranges from Ω(n2) to O(n3), while its expected number is Θ(n2logn) when the points in S are chosen uniformly and independently at random from a convex and bounded body in the plane.

2004 ◽  
Vol 41 (2) ◽  
pp. 243-269 ◽  
Author(s):  
Imre Bárány ◽  
Pável Valtr

A subset A of a finite set P of points in the plane is called an empty polygon, if each point of A is a vertex of the convex hull of A and the convex hull of A contains no other points of P. We construct a set of n points in general position in the plane with only ˜1.62n2 empty triangles, ˜1.94n2 empty quadrilaterals, ˜1.02n2 empty pentagons, and ˜0.2n2 empty hexagons.


10.37236/700 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Le Anh Vinh

Let $\mathcal{P}$ be a set of $n$ points in the finite plane $\mathbb{F}_q^2$ over the finite field $\mathbb{F}_q$ of $q$ elements, where $q$ is an odd prime power. For any $s \in \mathbb{F}_q$, denote by $A (\mathcal{P}; s)$ the number of ordered triangles whose vertices in $\mathcal{P}$ having area $s$. We show that if the cardinality of $\mathcal{P}$ is large enough then $A (\mathcal{P}; s)$ is close to the expected number $|\mathcal{P}|^3/q$.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2018 ◽  
Vol 68 ◽  
pp. 277-291 ◽  
Author(s):  
Carlos Alegría-Galicia ◽  
David Orden ◽  
Carlos Seara ◽  
Jorge Urrutia
Keyword(s):  

2002 ◽  
Vol 12 (05) ◽  
pp. 429-443 ◽  
Author(s):  
NAOKI KATOH ◽  
HISAO TAMAKI ◽  
TAKESHI TOKUYAMA

We give an optimal bound on the number of transitions of the minimum weight base of an integer valued parametric polymatroid. This generalizes and unifies Tamal Dey's O(k1/3 n) upper bound on the number of k-sets (and the complexity of the k-level of a straight-line arrangement), David Eppstein's lower bound on the number of transitions of the minimum weight base of a parametric matroid, and also the Θ(kn) bound on the complexity of the at-most-k level (the union of i-levels for i = 1,2,…,k) of a straight-line arrangement. As applications, we improve Welzl's upper bound on the sum of the complexities of multiple levels, and apply this bound to the number of different equal-sized-bucketings of a planar point set with parallel partition lines. We also consider an application to a special parametric transportation problem.


Sign in / Sign up

Export Citation Format

Share Document