scholarly journals Bayesian Joint Input-State Estimation for Nonlinear Systems

Vibration ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 281-303
Author(s):  
Timothy J. Rogers ◽  
Keith Worden ◽  
Elizabeth J. Cross

This work suggests a solution for joint input-state estimation for nonlinear systems. The task is to recover the internal states of a nonlinear oscillator, the displacement and velocity of the system, and the unmeasured external forces applied. To do this, a Gaussian process latent force model is developed for nonlinear systems. The model places a Gaussian process prior over the unknown input forces for the system, converts this into a state-space form and then augments the nonlinear system with these additional hidden states. To perform inference over this nonlinear state-space model a particle Gibbs approach is used combining a “Particle Gibbs with Ancestor Sampling” Markov kernel for the states and a Metropolis-Hastings update for the hyperparameters of the Gaussian process. This approach is shown to be effective in a numerical case study on a Duffing oscillator where the internal states and the unknown forcing are recovered, each with a normalised mean-squared error less than 0.5%. It is also shown how this Bayesian approach allows uncertainty quantification of the estimates of the states and inputs which can be invaluable in further engineering analyses.

2014 ◽  
Vol 24 (2) ◽  
pp. 313-323 ◽  
Author(s):  
Piotr Tatjewski

Abstract Disturbance modeling and design of state estimators for offset-free Model Predictive Control (MPC) with linear state-space process models is considered in the paper for deterministic constant-type external and internal disturbances (modeling errors). The application and importance of constant state disturbance prediction in the state-space MPC controller design is presented. In the case with a measured state, this leads to the control structure without disturbance state observers. In the case with an unmeasured state, a new, simpler MPC controller-observer structure is proposed, with observation of a pure process state only. The structure is not only simpler, but also with less restrictive applicability conditions than the conventional approach with extended process-and-disturbances state estimation. Theoretical analysis of the proposed structure is provided. The design approach is also applied to the case with an augmented state-space model in complete velocity form. The results are illustrated on a 2×2 example process problem.


Sign in / Sign up

Export Citation Format

Share Document