state observers
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 103)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Luis Ángel Blas-Sánchez ◽  
Margarita Galindo-Mentle ◽  
Adolfo Quiroz-Rodríguez ◽  
Marlon Licona-González

In this work a feedback linearization technique is proposed, to carry it out to linearize the dynamic model of the quadrotor, a change of variable is introduced that maps the nonlinearities of the system into a nonlinear uncertainty signal contained in the domain of the action of control and is applied to the dynamic model of the quadrotor. To estimate the nonlinear uncertainty signal, the Beard-Jones filter is used, which is based on standard state observers. To verify the effectiveness of the proposed control scheme, experiments are carried out outdoors to follow a circular trajectory in the (x,y) plane. This presented control scheme is suitable for unmanned aerial vehicles where it is important to reject not only non-linearities but also to seek the simplicity and effectiveness of the control scheme for its implementation.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3180
Author(s):  
Ivan Francisco Yupanqui Yupanqui Tello ◽  
Alain Vande Vande Wouwer ◽  
Daniel Coutinho

While state estimation techniques are routinely applied to systems represented by ordinary differential equation (ODE) models, it remains a challenging task to design an observer for a distributed parameter system described by partial differential equations (PDEs). Indeed, PDE systems present a number of unique challenges related to the space-time dependence of the states, and well-established methods for ODE systems do not translate directly. However, the steady progresses in computational power allows executing increasingly sophisticated algorithms, and the field of state estimation for PDE systems has received revived interest in the last decades, also from a theoretical point of view. This paper provides a concise overview of some of the available methods for the design of state observers, or software sensors, for linear and semilinear PDE systems based on both early and late lumping approaches.


Author(s):  
Harvey David Rojas ◽  
Herbert Enrique Rojas ◽  
John Cortés-Romero

2021 ◽  
Author(s):  
Lu Liu ◽  
Anxin Yang ◽  
Weixing Chen ◽  
Weidong Zhang

Abstract This paper is concerned with the tracking control of a class of uncertain strict-feedback systems subject to partial loss of actuator effectiveness, in addition to uncertain model dynamics and unknown disturbances. A resilient anti-disturbance dynamic surface control method is proposed to achieve stable tracking regardless of partial actuator faults. First, data-driven adaptive extended state observers are designed based on memory-based identifiers, such that the uncertain model dynamics, external disturbances, and the unknown input gains due to actuator faults can be estimated. Next, a resilient anti-disturbance dynamic surface controller is developed based on recovered information from the data-driven adaptive extended state observers. After that, it is proven that the cascade system formed by the observer and controller is input-to-state stable. Finally, comparative studies are performed to validate the efficacy of the resilient anti-disturbance dynamic surface control method for nonlinear strict-feedback systems subject to partial loss of actuator effectiveness.


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 281
Author(s):  
Yousef Alipouri ◽  
Lexuan Zhong

State observers are essential components of a modern control system. It is often designed based on a mathematical model of the process, thus requiring detailed process knowledge. However, in the existing state estimation methods, equal delays are commonly assumed for all communication lines, which is unrealistic and poses problems such as instability and a degraded performance of observers when unequal time delays exist. In this paper, a design of observers considering the measurement delays is presented. To deal with this problem, a chain-based observer has been proposed in which each chain deals with one output delay, performs prediction for the unavailable output value, and passes it to the next chain. Convergence of each chain observer as well as overall state estimation were proven. To illustrate the performance of the proposed scheme, simulation studies were performed on a benchmark continuous stirred tank heater (CSTH) process.


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 282
Author(s):  
Peiyu Wang ◽  
Liangkuan Zhu ◽  
Chunrui Zhang ◽  
Chengcheng Wang ◽  
Kangming Xiao

The actuator of a particleboard glue-dosing system, the glue pump motor, is affected by external disturbances and unknown uncertainty. In order to achieve accurate glue-flow tracking, in this paper, a glue pump motor compound control method was designed. First, the prescribed performance control method is used to improve the transient behaviors, and the error of the glue flow tracking is guaranteed to converge to a preset range, as a result of the design of an appropriate performance function. Second, two extended state observers were designed to estimate the state vector and the disturbance, in order to improve the robustness of the controlled system. To further strengthen the steady-state performance of the system, the sliding-mode dynamic surface control method was introduced to compensate for uncertainties and disturbances. Finally, a Lyapunov stability analysis was conducted, in order to prove that all of the signals are bounded in a closed-loop system, and the effectiveness and feasibility of the proposed method were verified through numerical simulation.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6790
Author(s):  
Daniel Wachowiak

Properties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response of the observer. System identification using least-squares estimation is implemented to determine the dynamic properties of the observer based on the estimation error signal. The influence of sampling time as well as signal length on the system identification has been studied. The results of gains selection using the proposed method have been compared with results obtained using the approach based on the placement of the poles of linearized estimation error equations. The introduced method delivers results comparable with analytical methods and does not require prior preparation specific to the implemented speed observer, such as linearization.


Sign in / Sign up

Export Citation Format

Share Document