weakly nonlinear
Recently Published Documents


TOTAL DOCUMENTS

2127
(FIVE YEARS 305)

H-INDEX

64
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 469
Author(s):  
Theofanis Karambas ◽  
Eva Loukogeorgaki

In the present work, a Boussinesq-type numerical model is developed for the simulation of nonlinear wave-heaving cylinder interaction. The wave model is able to describe the propagation of fully dispersive and weakly nonlinear waves over any finite water depth. The wave-cylinder interaction is taken into account by solving simultaneously an elliptic equation that determines the pressure exerted by the fluid on the floating body. The heave motion for the partially immersed floating cylinder under the action of waves is obtained by solving numerically the body’s equation of motion in the z direction based on Newton’s law. The developed model is applied for the case of a fixed and a free-floating circular cylinder under the action of regular waves, as well as for a free-floating cylinder undergoing a forced motion in heave. Results (heave and surge exciting forces, heave motions, and wave elevation) are compared with those obtained using a frequency domain numerical model, which is based on the boundary integral equation method.


2022 ◽  
Vol 933 ◽  
Author(s):  
Pranav Thakare ◽  
Vineeth Nair ◽  
Krishnendu Sinha

Linear interaction analysis (LIA) is routinely used to study the shock–turbulence interaction in supersonic and hypersonic flows. It is based on the inviscid interaction of elementary Kovásznay modes with a shock discontinuity. LIA neglects nonlinear effects, and hence it is limited to small-amplitude disturbances. In this work, we extend the LIA framework to study the fundamental interaction of a two-dimensional vorticity wave with a normal shock. The predictions from a weakly nonlinear framework are compared with high-order accurate numerical simulations over a range of wave amplitudes ( $\epsilon$ ), incidence angles ( $\alpha$ ) and shock-upstream Mach numbers ( $M_1$ ). It is found that the nonlinear generation of vorticity at the shock has a significant contribution from the intermodal interaction between vorticity and acoustic waves. Vorticity generation is also strongly influenced by the curvature of the normal shock wave, especially for high incidence angles. Further, the weakly nonlinear analysis is able to predict the correct scaling of the nonlinear effects observed in the numerical simulations. The analysis also predicts a Mach number dependent limit for the validity of LIA in terms of the maximum possible amplitude of the upstream vorticity wave.


Author(s):  
Benjamin Lee Foster ◽  
Nicolás Verschueren ◽  
Edgar Knobloch ◽  
Leonardo Gordillo

Abstract A simple equation modelling an inextensible elastic lining of an inner-lined tube subject to an imposed pressure difference is derived from a consideration of the idealised elastic properties of the lining and the pressure and soft-substrate forces. Two cases are considered in detail, one with prominent wrinkling and a second one in which wrinkling is absent and only buckling remains. Bifurcation diagrams are computed via numerical continuation for both cases. Wrinkling, buckling, folding, and mixed-mode solutions are found and organised according to system-response measures including tension, in-plane compression, maximum curvature and energy. Approximate wrinkle solutions are constructed using weakly nonlinear theory, in excellent agreement with numerics. Our approach explains how the wavelength of the wrinkles is selected as a function of the parameters in compressed wrinkling systems and shows how localised folds and mixed-mode states form in secondary bifurcations from wrinkled states. Our model aims to capture the wrinkling response of arterial endothelium to blood pressure changes but applies much more broadly.


2021 ◽  
Vol 153 ◽  
pp. 111580
Author(s):  
E. Tchomgo Felenou ◽  
H. J. Ouandji Boutcheng ◽  
Hermann T. Tchokouansi ◽  
A. Djazet ◽  
R. Tamwo Tchidjo

2021 ◽  
Vol 50 (11) ◽  
pp. 3405-3420
Author(s):  
Mohd Aftar Abu Bakar ◽  
Noratiqah Mohd Ariff ◽  
Andrew V. Metcalfe ◽  
David A. Green

This study investigates the wavelet-based system identification capabilities on determining the system nonlinearity based on the system impulse response function. Wavelet estimates of the instantaneous envelopes and instantaneous frequency are used to plot the system backbone curve. This wavelet estimate is then used to estimate the values of the parameter for the system. Two weakly nonlinear oscillators, which are the Duffing and the Van der Pol oscillators, have been analyzed using this wavelet approach. A case study based on a model of an oscillating flap wave energy converter (OFWEC) was also discussed in this study. Based on the results, it was shown that this technique is recommended for nonlinear system identification provided the impulse response of the system can be captured. This technique is also suitable when the system's form is unknown and for estimating the instantaneous frequency even when the impulse responses were polluted with noise.


Sign in / Sign up

Export Citation Format

Share Document