scholarly journals The Development of a Framework for Assessing the Energy Efficiency in Urban Water Systems and Its Demonstration in the Portuguese Water Sector

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Dália Loureiro ◽  
Catarina Silva ◽  
Maria Adriana Cardoso ◽  
Aisha Mamade ◽  
Helena Alegre ◽  
...  

Urban water systems (UWSs) are energy-intensive worldwide, particularly for drinking-water pumping and aeration in wastewater treatment. Usual approaches to improve energy efficiency focus only on equipment and disregard the UWS as a continuum of stages from source-to-tap-to-source (abstraction/transport—treatment—drinking water transport/distribution—wastewater and stormwater collection/transport—treatment—discharge/reuse). We propose a framework for a comprehensive assessment of UWS energy efficiency and a four-level approach to enforce it: overall UWS (level 1), stage (level 2), infrastructure component (level 3) and processes/equipment (level 4). The framework is structured by efficiency and effectiveness criteria (an efficient but ineffective infrastructure is useless), earlier and newly developed performance indicators and reference values. The framework and the approach are the basis for a sound diagnosis and intervention prioritising, and are being tested in a peer-to-peer innovation project involving 13 water utilities (representing 17% of the energy consumption by the Portuguese water sector in 2017). Results of levels 1–3 of analysis herein illustrated for a water utility demonstrate the framework and approach potential to assess UWS effectiveness and energy efficiency, and to select the stages and infrastructures for improvement and deeper diagnosis.

2020 ◽  
Vol 134 ◽  
pp. 110381
Author(s):  
Shakeel Ahmad ◽  
Haifeng Jia ◽  
Zhengxia Chen ◽  
Qian Li ◽  
Changqing Xu

2010 ◽  
Vol 3 (2) ◽  
pp. 91-99 ◽  
Author(s):  
P. Deines ◽  
R. Sekar ◽  
H. S. Jensen ◽  
S. Tait ◽  
J. B. Boxall ◽  
...  

Abstract. Microbiology in Urban Water Systems (MUWS) is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.


Sign in / Sign up

Export Citation Format

Share Document