An isogeometric formulation of locally-conformal perfectly matched layer for acoustic scattering problems

2021 ◽  
Vol 263 (6) ◽  
pp. 829-833
Author(s):  
Yongzhen Mi ◽  
Xiang Yu

This paper presents an isogeometric formulation of the locally-conformal perfectly matched layer (PML) for time-harmonic acoustic scattering problems. The new formulation is a generalization of the conventional locally-conformal PML, in which the NURBS patch supporting the PML domain is transformed from real space to complex space. This is achieved by complex coordinate stretching, based on a stretching vector field indicating the directions in which incident sound waves are absorbed. The performance of the isogeometric PML formulation is discussed through several acoustic scattering problems, spanning from one to three dimensions. It is found that the proposed method presents superior computational accuracy, high geometric adaptivity, and good robustness against challenging geometric features. The geometry-preserving ability inherent in the isogeometric framework could bring extra benefits by eliminating geometric errors that are unavoidable in the conventional PML. Meanwhile, these properties are not sensitive to the location of the sound source or the depth of the PML domain.

Author(s):  
Steven J. Newhouse ◽  
Ian C. Mathews

Abstract The boundary element method is an established numerical tool for the analysis of acoustic pressure fields in an infinite domain. There is currently no well established method of estimating the surface pressure error distribution for an arbitrary three dimensional body. Hierarchical shape functions have been used as a highly effective form of p refinement in many finite and boundary element applications. Their ability to be used as an error estimator in acoustic analysis has never been fully exploited. This paper studies the influence of mesh density and interpolation order on several acoustic scattering problems. A hierarchical error estimator is implemented and its effectiveness verified against the spherical problem. A coarse cylindrical mesh is then refined using the new error estimator until the solution has converged. The effectiveness of this analysis is shown by comparing the error indicators derived during the analysis to the solution generated from a very fine cylindrical mesh.


2000 ◽  
Author(s):  
Rabia Djellouli ◽  
Charbel Farhat ◽  
Radek Tezaur

Abstract A Newton-like method is designed for determining the shape or sought-after shape modifications of a scatterer from the knowledge of acoustic far-field patterns at a given number of observation points. This method distinguishes itself from existing numerical procedures by the following features: (a) exact Jacobian matrices for the linearized problems rather than approximate ones, (b) a fast numerical procedure for computing these Jacobian matrices, (c) a computationally efficient absorbing boundary condition for the finite element discretization, and (d) a numerically scalable domain decomposition methods for the fast solution of high-frequency direct acoustic scattering problems.


2005 ◽  
Vol 100 (4) ◽  
pp. 697-710 ◽  
Author(s):  
Frank Natterer ◽  
Frank Wübbeling

Sign in / Sign up

Export Citation Format

Share Document