mesh density
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 61)

H-INDEX

18
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 511
Author(s):  
Alireza Tabrizikahou ◽  
Mieczysław Kuczma ◽  
Magdalena Łasecka-Plura ◽  
Ehsan Noroozinejad Noroozinejad Farsangi

The behavior of masonry shear walls reinforced with pseudoelastic Ni–Ti shape memory alloy (SMA) strips and engineered cementitious composite (ECC) sheets is the main focus of this paper. The walls were subjected to quasi-static cyclic in-plane loads and evaluated by using Abaqus. Eight cases of strengthening of masonry walls were investigated. Three masonry walls were strengthened with different thicknesses of ECC sheets using epoxy as adhesion, three walls were reinforced with different thicknesses of Ni–Ti strips in a cross form bonded to both the surfaces of the wall, and one was utilized as a reference wall without any reinforcing element. The final concept was a hybrid of strengthening methods in which the Ni–Ti strips were embedded in ECC sheets. The effect of mesh density on analytical outcomes is also discussed. A parameterized analysis was conducted to examine the influence of various variables such as the thickness of the Ni–Ti strips and that of ECC sheets. The results show that using the ECC sheet in combination with pseudoelastic Ni–Ti SMA strips enhances the energy absorption capacity and stiffness of masonry walls, demonstrating its efficacy as a reinforcing method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Zhipeng ◽  
Wang Jinwei ◽  
Liu Rumin ◽  
Wang Tao ◽  
Han Guannan

For economic and efficient development of extremely high-condensate shale gas reservoirs, a numerical model of segmental multicluster fractured horizontal well was established considering the effect of condensate and desorption, and the optimization of fracturing segments, fracturing clusters, half-length of main fracture, fracture permeability, fracture mesh density, and fracture distribution patterns were studied. It is indicated that the horizontal well whose design length is 2,700 m performs best when it has 43 fracturing segments with three clusters in each segment and the fracture permeability is 300 mD. The production capacity of horizontal wells is positively linearly correlated with the half-length of fractures. Increasing fracture half-length would be an effective way to produce condensate oil near wellbore. An effective fractured area can be constructed to remarkably improve productivity when the half-length of the fracture is 50 m and the number of secondary fractures is four in each segment. On the basis of reasonable fracture parameters, the staggered type distribution pattern is beneficial to the efficient development of shale gas-condensate reservoirs because of its large reconstruction volume, far pressure wave, small fracture interference, and small precipitation range of condensate.


Author(s):  
M Hemici ◽  
T Chihi ◽  
M A Ghebouli ◽  
FATMI Messaoud ◽  
B Ghebouli ◽  
...  

Using density functional theory (DFT), the structural, elastic, electronic, and thermodynamic properties of Fe2Hf in the cubic and hexagonal solid phases with Fd-3m and P63/mmc are reported with generalized gradient approximations (GGA). To achieve energy convergence, we report the k-point mesh density and plane-wave energy cut-offs. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible Fe2Hf are determined in the wide pressure range. Finally, by using the quasi-harmonic Debye Model, the isothermal and adiabatic bulk modulus and heat capacity of Fe2Hf are also successfully obtained in the present work. By the elastic stability criteria, it is predicted that Fd-3m and P63/mmc structures of Fe2Hf are stable in the pressure range studied, respectively.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032086
Author(s):  
Yonghui Zheng ◽  
Jifeng Wei ◽  
Rui Xiao

Abstract The computational parameters are of great influence on underwater explosion load. A one-dimensional wedge model is established to analyze the influence of boundary condition (BC), water domain and mesh density on the numerical simulation results. The results show that flowout BC is rigid boundary and transmit BC is not suitable for simulating the collapses phase of bubble pulsation. According to propagation distance of shock wave and its reflected wave, a simple method to calculate appropriate water domain is proposed. A positive correlation between mesh density (λ) and calculated peak pressure of shock wave (P m) is found. When λ tends to infinity, simulated Pm in near field is quite reliable, but the values in relatively far field are lower than empirical results.


2021 ◽  
Vol 40 (5) ◽  
pp. 1-14
Author(s):  
Lohit Petikam ◽  
Ken Anjyo ◽  
Taehyun Rhee

Despite the popularity of three-dimensional (3D) animation techniques, the style of 2D cel animation is seeing increased use in games and interactive applications. However, conventional 3D toon shading frequently requires manual editing to clean up undesired shadows or add stylistic details based on art direction. This editing is impractical for the frame-by-frame editing in cartoon feature film post-production. For interactive stylised media and games, post-production is unavailable due to real-time constraints, so art-direction must be preserved automatically. For these reasons, artists often resort to mesh and texture edits to mitigate undesired shadows typical of toon shaders. Such edits allow real-time rendering but are limited in resolution, animation quality and lack detail control for stylised shadow design. In our framework, artists build a “shading rig,” a collection of these edits, that allows artists to animate toon shading. Artists pre-animate the shading rig under changing lighting, to dynamically preserve artistic intent in a live application, without manual intervention. We show our method preserves continuous motion and shape interpolation, with fewer keyframes than previous work. Our shading shape interpolation is computationally cheaper than state-of-the-art image interpolation techniques. We achieve these improvements while preserving vector quality rendering, without resorting either to high texture resolution or mesh density.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6259
Author(s):  
Slavenka Petrak ◽  
Maja Mahnić Naglić ◽  
Dubravko Rogale ◽  
Jelka Geršak

Contemporary CAD systems enable 3D clothing simulation for the purpose of predicting the appearance and behavior of conventional and intelligent clothing in real conditions. The physical and mechanical properties of the fabric and the simulation parameters play an important role in this issue. The paper presents an analysis of the parameters of the polygonal computer model that affect fabric drape simulation. Experimental research on physical and mechanical properties were performed for nine fabrics. For this purpose, the values of the parameters for the tensile, bending, shear, and compression properties were determined at low loads, while the complex deformations were analyzed using Cusick drape meter devices. The fabric drape simulations were performed using the 2D/3D CAD system for a computer clothing design on a disk model, corresponding to real testing on the drape tester in order to allow a correlation analysis between the values of drape parameters of the simulated fabrics and the realistically measured values for each fabric. Each fabric was simulated as a polygonal model with a variable related to the side length of the polygon to analyze the influence of the polygon size, i.e., mesh density, on the model behavior in the simulation. Based on the simulated fabric drape shape, the values of the areas within the curves necessary to calculate the drape coefficients of the simulated fabrics were determined in the program for 3D modelling. The results were statistically processed and correlations between the values of the drape coefficients and the optimal parameters for simulating certain physical and mechanical properties of the fabric were determined. The results showed that the mesh density of the polygonal model is an important parameter for the simulation results.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258615
Author(s):  
Alexandra Lawrence ◽  
Fabian Friedrich ◽  
Carl Beierkuhnlein

Habitat loss from anthropogenic development has led to an unprecedented decline in global biodiversity. Protected areas (PAs) exist to counteract this degradation of ecosystems. In the European Union, the Natura 2000 (N2k) network is the basis for continent-wide conservation efforts. N2k is the world’s largest coordinated network of protected areas. However, threats to ecosystems do not stop at the borders of PAs. As measured by a landscape fragmentation metric, anthropogenic development can affect the interiors of PAs. To ensure the long-term viability of the N2k network of PAs, this paper attempts to quantify the degree to which N2k sites are insulated from development pressures. We use a comprehensive dataset of effective mesh density (seff) to measure aggregate fragmentation inside and within a 5 km buffer surrounding N2k sites. Our results show a strong correlation (R² = 0.78) between fragmentation (seff) within and around N2k sites. This result applies to all biogeographical regions in Europe. Only a narrow majority (58.5%) of N2k sites are less fragmented than their surroundings. Remote and mountainous regions in northern Europe, the Alps, parts of Spain, and parts of eastern Europe show the lowest levels of fragmentation. These regions tend to hold the largest N2k sites as measured by area. In contrast, central and western Europe show the highest fragmentation levels within and around N2k sites. 24.5% of all N2k sites are classified as highly to very-highly fragmented. N2k PA age since initial protection does not correlate with the difference in exterior and interior fragmentation of N2k PAs. These results indicate that PAs in Europe are not sheltered from anthropogenic pressures leading to fragmentation. Hence, we argue that there is a high potential for improving PA efficacy by taking pre-emptive action against encroaching anthropogenic fragmentation and by targeting scarce financial resources where fragmentation pressures can be mitigated through enforced construction bans inside PAs.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Nicholas S Gukop ◽  
Peter M Kamtu ◽  
Bildad D Lengs ◽  
Alkali Babawuya ◽  
Adesanmi Adegoke

Investigation on the effect of mesh density on the analysis of simple support bracket was conducted using Finite element analysis simulation. Multiple analyses were carried out with mesh refinement from coarse mesh of 3.5 mm to a high-quality fine mesh with element size of 0.35 mm under 15 kN loading. Controlled mesh analysis was also conducted for the same loading. At the mesh size of 0.35 mm, it has a maximum stress value of 42.7 MPa. As the element size was reduced, it was observed that below 1.5 mm (higher mesh density) there was no significant increase in the peak stress value; the stress at this level increased by 0.028 % only. Further decreased of mesh size shows insignificant effect on the stresses and displacements for the high-quality fine mesh analysis. The application of High-quality mesh control analysis showed a significant reduction in the computation time by more than 90%. Regardless of the reduction in computation time, the controlled mesh analysis achieved more than 99% accuracy as compared to high-quality fine mesh analysis. Keywords— Computation time, Finite Element Analysis, Mesh density, Support Bracket.


2021 ◽  
pp. 1-11
Author(s):  
Qingfeng Xu ◽  
Zhenguo Nie ◽  
Handing Xu ◽  
Haosu Zhou ◽  
Hamid Reza Attar ◽  
...  

Abstract In stress field analysis, the finite element method is a crucial approach, in which the mesh-density has a significant impact on the results. High mesh density usually contributes authentic to simulation results but costs more computing resources. To eliminate this drawback, we propose a data-driven mesh-density boost model named SuperMeshingNet that uses low mesh-density as inputs, to acquire high-density stress field instantaneously, shortening computing time and cost automatically. Moreover, the Res-UNet architecture and attention mechanism are utilized, enhancing the performance of SuperMeshingNet. Compared with the baseline that applied the linear interpolation method, SuperMeshingNet achieves a prominent reduction in the mean squared error (MSE) and mean absolute error (MAE) on the test data. The well-trained model can successfully show more excellent performance than the baseline models on the multiple scaled mesh-density, including 2X, 4X, and 8X. Enhanced by SuperMeshingNet with broaden scaling of mesh density and high precision output, FEA can be accelerated with seldom computational time and cost.


Sign in / Sign up

Export Citation Format

Share Document