Rolling bearings. Needle roller bearings with drawn cup and without inner ring. Boundary dimensions, geometrical product specifications (GPS) and tolerance values

2016 ◽  
2009 ◽  
Vol 131 (5) ◽  
Author(s):  
K. Sunil Kumar ◽  
Rajiv Tiwari ◽  
P. V. V. N. Prasad

The long fatigue life is the one of the most important criterion for the design of rolling bearings, however, due to complex and diverse internal geometries, each type of rolling bearings require a different design formulation. To increase the life of cylindrical roller bearings, the profile (or the crowning) of the roller plays an important role. A flat profile of the rolling element results in the edge stress concentrations at roller ends. A circular crowning of roller eliminates the edge stress concentration at the lower and moderate loads only; however, it develops edge stress concentrations at heavy loads. The logarithmic profile of the roller results in no edge stress concentration at the low, medium, and heavy loads; distribution of contact stresses is also nearly uniform along the length of the roller. A design methodology for the optimum design of cylindrical roller bearings with the logarithmic profile has been outlined. A nonlinear constrained optimization problem has been formulated for the design of cylindrical roller bearings with logarithmic profiles and is optimized by using real-coded genetic algorithms. The change in roller profile has not been accounted for explicitly in the standard definition of the dynamic capacity; hence, for the present case directly the Lundberg–Palmgren life equation has been chosen as an objective function. Design variables include four bearing geometrical parameters and the two logarithmic profile generating parameters are considered. In addition to these, another five design constraint constants are also included, which indirectly affect the fatigue life of cylindrical roller bearings. The five design constraint constants have been given bounds based on the parametric studies through initial optimization runs. The effective length of the roller is taken corresponding to the standard roller diameter, which has standard discrete dimensions. Constraint violation study has been performed to have an assessment of the effectiveness of each of the constraints. A convergence study has been carried out to ensure the global optimum point in the design. A sensitivity analysis of various geometric design parameters has been performed using the Monte Carlo simulation technique, in order to see changes in the fatigue life of the bearing. Illustrations show that the multiplier of the logarithmic profile deviation parameter has more effect on the fatigue life as compared with other geometric parameters.


2019 ◽  
Vol 9 (1) ◽  
pp. 18-23
Author(s):  
K Rabeyee ◽  
X Tang ◽  
F Gu ◽  
A D Ball

Rolling element bearings (REBs) are typical tribological components used widely in rotating machines. Their failure could cause catastrophic damage. Therefore, condition monitoring of bearings has always had great appeal for researchers. Usually, the detection and diagnostics of incipient bearing faults are achieved by characterising the weak periodic impacts induced by the collision of defective bearing components. However, race wear evolution, which is inevitable in bearing applications, can affect the contact between bearing elements and races, thereby decreasing the impact magnitudes and impeding detection performance. In this paper, the effect of wear evolution on the condition monitoring of rolling bearings is firstly analysed based on internal clearance changes resulting from the wear effect. Then, an experimental study is ingeniously designed to simulate wear evolution and evaluate its influence on wellknown envelope signatures according to measured vibrations from widely used tapered roller bearings. The fault type is diagnosed in terms of two indices: the magnitude variation of characteristic frequencies and the deviation of such frequencies. The experimental results indicate a signature decrease with regard to wear evolution, suggesting that accurate severity diagnosis needs to take into account both the wear conditions of the bearing and the signature magnitudes.


1988 ◽  
Vol 110 (1) ◽  
pp. 26-31 ◽  
Author(s):  
R. S. Sayles ◽  
E. Ioannides

Predictions of fatigue life from debris indented roller bearings are calculated by the methods described by Webster, Ioannides, and Sayles [9] and presented as a comparison to the actual fatigue history of the bearings. Research is also presented on the influence of debris type and geometry in relation to the formation of dents within nonconforming contacts. In particular, the concept of elastic conformity around entrained debris is studied in detail and it is shown that a critical debris aspect ratio may well exist which defines a boundary between debris that can damage the contact surfaces, and that which cannot.


Sign in / Sign up

Export Citation Format

Share Document