roller bearings
Recently Published Documents


TOTAL DOCUMENTS

1006
(FIVE YEARS 157)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Honglin Luo ◽  
Lin Bo ◽  
Xiaofeng Liu ◽  
Hong Zhang

Accurate remaining useful life (RUL) prediction of bearings is the key to effective decision-making for predictive maintenance (PdM) of rotating machinery. However, the individual heterogeneity and different working conditions of bearings make the degradation trajectories of bearings different, resulting in the mismatch between the RUL prediction model established by the full-life training bearing and the testing bearings. To address this challenge, this paper proposes a novel RUL prediction method for roller bearings that considers the difference and similarity of degradation trajectories. In this method, a feature extraction method based on continuous wavelet transform (CWT) and convolutional autoencoder (CAE) is proposed to extract the deep features associated with bearing performance degradation before the degradation indicator (DI) is obtained by applying the self-organizing maps (SOM) method. Next, a dynamic time warping (DTW) based method is applied to perform the similarity matching of degradation trajectories of the training and testing bearings. Driven by the historical DIs of the given bearing, the grey forecasting model with full-order time power terms (FOTP-GM) is applied to model the degradation trajectory using a parameter optimization method. Then, the failure threshold of the given testing bearing can be determined using a data-driven method without manual intervention. Finally, the RUL of the given testing bearing can be estimated using the preset failure threshold and the optimized degradation trajectory model of the given testing bearing. The experimental results show that the proposed method retains the individual differences of bearing degradation trend, realizes the independent and reasonable bearing failure threshold setting, and improves the prediction accuracy of RUL.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110672
Author(s):  
Risheng Long ◽  
Zhen Pan ◽  
Zhihao Jin ◽  
Yimin Zhang ◽  
Shaoni Sun ◽  
...  

To prolong the serve life of roller element bearings (REB) and improve the reliability of mechanical system, the tribological behavior of the “washers-cage-rollers” system of grooves textured thrust cylindrical roller bearings (TCRB, 81107TN) under dry wear was researched. The pattern parameters include: width of grooves (WOG, 50, 100, and 150 μm), depth of grooves (DPOG, 7, 11, and 15 μm), as well as groove deflection angle (GDA, 0°, 45°, 90°, and 135°). The influence mechanism of grooves on the tribological properties of REBs is discussed. The results show that: As the GDA is 45°, the coefficient of friction (COF) and mass loss of bearing is the lowest among four angles. The average COFs of grooves textured bearings are much higher than that of smooth one, and their mass losses are all lower than that of smooth bearing. The influence of pattern parameters on the surface stresses of grooves textured bearings is weak. In this work, when the WOG is 50 μm and the DPOG is 7 μm, the wear loss of grooves textured bearing is the lowest, reduced by up to 75.6%. This work can provide a valuable reference for the raceway design and optimization of REBs.


2021 ◽  
Author(s):  
Chih-Ling Lin ◽  
Paul A. Meehan ◽  
Khosro Fallahnezhad ◽  
Osama Brinji

Abstract Four commercial greases with various thickeners and base oils were experimentally examined to compare their false brinelling wear resistance in a test rig simulating roller bearings during rail/sea transportation for the first time. Greases containing zinc dialkyl dithiophosphates (ZDDP) showed superior false brinelling reduction, evidenced by no visible wear mark in the raceways. The mechanism for false brinelling mitigation was shown to be from a ZDDP-induced tribofilm which decreases the friction and wear coefficient in the contact area. Surface chemical analysis showed that for grease lubricated fretting contacts, ZDDP-derived tribofilms can be generated in the presence of micro-sliding motions and energy dissipation at the contact interface at low frequency (i.e. 4-8 Hz), due to the mechanochemical reactions. For greases without ZDDP, false brinelling wear was reduced by 97% when using grease with a more abundant and less viscous oil, which bleeds readily from an open structured thickener. The results highlight the ability of ZDDP as an additive in grease to better protect roller bearings against false brinelling during rail/sea transportation.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042071
Author(s):  
I M Klebanov ◽  
V V Murashkin ◽  
M I Kondratev ◽  
I E Adeyanov ◽  
K A Polyakov

Abstract The paper investigates the influence of the process of running-in the ends of rollers and sides of cylindrical roller bearings on the conditions of hydrodynamic contact of these parts: the formation of an oil film and friction. For this purpose, the results of finite element modeling of the stress-strain state of the bearing parts in contact: the inner ring, the side flange and a fragment of the axle of the wheelset, and the multi-mass simulation of the dynamics of the bearing operation are used. The influence of the yaw angle of the roller on the size and shape of the contact area on the side is investigated. The dependences for calculating the thickness of the oil film in the contact between the ends of the rollers and the flanges of the bearing rings are being refined, which now make it possible to take into account the misaligned position of these parts during their force interaction. The results are illustrated using the example of a roller bearing of standard size 232926.


2021 ◽  
Vol 71 (2) ◽  
pp. 213-220
Author(s):  
Protsenko Vladyslav ◽  
Babiy Mykhaylo ◽  
Nastasenko Valentyn ◽  
Protasov Roman

Abstract The structure of the MAK M43 diesel high pressure fuel pump driving is analyzed. It is shown that presence of redundant constraints in its mechanism is the reason of roller bearings failure. It is proposed redundant constraints elimination by adding movabilities in mechanism.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yao Qishui ◽  
Chen Qianxu ◽  
Yu Jianghong ◽  
Yang Wen

Elastic composite cylindrical roller bearing is a novel type of roller bearing whose rolling element is designed by innovating the rolling element structure of cylindrical roller bearings. For the purpose of investigating the dynamic properties of the rolling elements with different structural parameters and solving the modes of elastic composite cylindrical rolling element with different filling degrees, first, this study compares elastic composite cylindrical rolling element to solid cylindrical rolling element, in terms of natural frequency and vibration mode. Next, the integration time step is determined, based on the natural frequency of the vibration in the Y direction, the response of various rolling element, under impact loads, is solved. Furthermore, the laws of the energy changes and nodal displacement variations of rolling element are explored, at different filling degrees. Finally, adopting the decay method, the damping ratio of elastic composite cylindrical rolling element, under different structural parameters and external loads, is calculated. According to the results, with the increase of filling degree, the natural frequencies of various orders of elastic composite cylindrical rolling element gradually declined. The damping ratio of rolling elements decreased, as the filling degree increased, while it could be changed by adjusting the structural dimensions of rolling elements. The analysis results of this study provide some theoretical reference for studies on the parameter optimization of rolling element structures, the vibration and noise reduction of elastic composite cylindrical roller bearings.


Author(s):  
Ranran Li ◽  
Shunming Li ◽  
Mengije Zeng ◽  
Jiayang Xiang ◽  
Jin Chang ◽  
...  

Author(s):  
Azzedine Dadouche ◽  
Rami Kerrouche

Abstract Rolling-element bearings (REB) can develop severe damage due to skidding (slipping) between the rolling elements and bearing races. Skidding can be described as gross sliding between the bearing surfaces in relative motion and can result in significant surface distress such as smearing, especially at light loads and high rotational speeds. Under these conditions, skidding occurs between the rolling elements and the bearing races, leading to increased wear (higher friction coefficient), elevated bearing temperature, significant power losses and reduced service life of the bearing. The main objective of this study is to investigate the significance of various sensing technologies (induction, vibration, ultrasound, acoustic and optical) in detecting skidding in standard series roller bearings as well as custom-made roller bearings for aero engine applications. The bearings have a bore diameter of 60 mm and 90 mm, respectively. Jet and under race lubrication techniques have been used to supply oil to the bearings under test. The custom-made aero engine test bearing features special channels to allow under race lubrication of the rollers/races contacts as well as the cage land. The effect of radial load, rotational speed and oil flow on roller skidding have also been investigated and analyzed. Tests have been performed on a dedicated high speed experimental bearing facility and data was recorded using a commercially-available data acquisition system.


Sign in / Sign up

Export Citation Format

Share Document