Additive manufacturing. Design. Requirements, guidelines and recommendations

2018 ◽  
Author(s):  
Seung Hwan Joo ◽  
Sung Mo Lee ◽  
Jin Ho Yoo ◽  
Hyeon Jin Son ◽  
Seung Ho Lee

In order to use 3D printing technology as a sanction, it is necessary to optimize topology, component unification, and reduce weight need for advanced manufacturing design. In the case of metal 3D printing, it is necessary to manage deformation and defects in the process cause of using laser, and support generation and design optimization must be accompanied for efficiency. Currently, design progresses through simulation before actual production in AM field. This chapter explores design in additive manufacturing.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1800 ◽  
Author(s):  
Marcin Hoffmann ◽  
Szymon Skibicki ◽  
Paweł Pankratow ◽  
Adam Zieliński ◽  
Mirosław Pajor ◽  
...  

Developments in the automation of construction processes, observable in recent years, is focused on speeding up the construction of buildings and structures. Additive manufacturing using concrete mixes are among the most promising technologies in this respect. 3D concrete printing allows the building up of structure by extruding a mix layer by layer. However, the mix initially has low capacity to transfer loads, which can be particularly troublesome in cases of external components that need to be placed on top such as precast lintels or floor beams. This article describes the application of additive manufacturing technology in the fabrication of a building wall model, in which the door opening was finished with automatic lintel installation. The research adjusts the wall design and printing process, accounting for the rheological and mechanical properties of the fresh concrete, as well as design requirements of Eurocode. The article demonstrates that the process can be planned precisely and how the growth of stress in fresh concrete can be simulated, against the strength level developed. The conclusions drawn from this research will be of use in designing larger civil structures. Furthermore, the adverse effects of concrete shrinkage on structures is also presented, together with appropriate methods of control.


Author(s):  
Sungshik Yim ◽  
David W. Rosen

This research discusses a framework for automating process model realization for additive manufacturing. The models map relationships from design requirements to process variables and can be utilized for future process planning. A repository is employed to collect data and contains previous process plans and corresponding design requirements. The framework organizes data through a statistical clustering method and builds regression models using a multi-layer neural network. Hierarchical and k-means clustering methods are employed in series to manage the data. A two layer neural network and augmented training algorithm are employed to build process models. The framework has been tested with Stereolithography and Selective Laser Sintering process planning problems to demonstrate its usefulness.


Sign in / Sign up

Export Citation Format

Share Document