Faculty Opinions recommendation of Response to Prins: broad virus resistance in transgenic plants.

Author(s):  
Niklaus Ammann
Virology ◽  
2019 ◽  
Vol 537 ◽  
pp. 208-215 ◽  
Author(s):  
Archana Singh ◽  
Irina Mohorianu ◽  
Darrell Green ◽  
Tamas Dalmay ◽  
Indranil Dasgupta ◽  
...  

Nature ◽  
1987 ◽  
Vol 328 (6133) ◽  
pp. 799-802 ◽  
Author(s):  
Bryan D. Harrison ◽  
Michael A. Mayo ◽  
David C. Baulcombe

1996 ◽  
Vol 141 (12) ◽  
pp. 2259-2276 ◽  
Author(s):  
M. Prins ◽  
R. Goldbach

2002 ◽  
Vol 15 (8) ◽  
pp. 826-833 ◽  
Author(s):  
Kriton Kalantidis ◽  
Stavros Psaradakis ◽  
Martin Tabler ◽  
Mina Tsagris

Expression or introduction of double-stranded (ds)RNA in eukaryotic cells can trigger sequence-specific gene silencing of transgenes, endogenes, and viruses. Transgenic plants producing dsRNAs with homology to viral sequences are likely to exhibit pathogen-derived resistance to the virus. Cucumber mosaic virus (CMV), a very widespread virus with over 1,000 host species, has the natural ability to suppress silencing in order to establish infection. Here, we report the generation of transgenic tobacco lines, where a DNA transgene containing an inverted repeat of CMV cDNA had been introduced. Expression of this DNA construct delivered an RNA transcript that is able to form an intramolecular double strand. Transgenic plants were challenged with CMV. Three categories of plants could be discriminated: susceptible plants, which typically reacted with milder symptoms than the wild-type control; a “recovery” phenotype, in which newly emerging leaves were free of symptoms; and plants that showed complete resistance. Northern analysis showed that the expression of CMV dsRNA caused, in some transgenic lines, the generation of short RNAs characteristic of posttranscriptional gene silencing. Those lines were CMV resistant. The correlation between the detection of short RNAs and virus resistance provides a molecular marker that makes it possible to predict success in attempts to engineer virus resistance by dsRNA.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 560A-560
Author(s):  
D.M. Tricoli ◽  
K.J. Carney ◽  
L.J. Nea ◽  
J.M. Palys ◽  
J.F. Reynolds ◽  
...  

Many seed companies are using plant biotechnology as a valuable extension of conventional plant breeding with the goal of providing breeders with novel biological traits. The application of biotechnology allows scientists and breeders to make precise changes during the process of germplasm improvement. Many of the first improvements achieved using transgenic plants have involved the transfer of input traits. Some of these traits include, insect resistance, nematode resistance, disease resistance, and herbicide tolerance. For example, the insertion of a gene that produces the crystalline toxin from Bacillus thuringeinsis has led to the production of transgenic plants that are resistant to insects from the Order Lepidoptera. The transfer of coat protein genes from plant viruses has lead to the development of transgenic crops that are resistant to the virus from which the gene or genes were isolated. Various strategies have been developed that allow transgenic plants to tolerate applications of herbicides that allows for improved weed control. In addition to input traits, other strategies are now being used that are directed at improving output traits. These include such traits as enhanced shelf life, ripening control, altered oils, and superior processing characteristics. At Seminis Vegetable Seed Co., we are currently developing transgenic plants with enhanced input as well as output traits. We have an active program using pathogen derived genes to develop virus resistance cultivars in a range of crops including, tomato, cucurbits, and peppers. Using this approach, we have been able to develop plants with multiple virus resistance by transforming germplasm with constructs containing stacked genes. Seminis is currently marketing a hybrid squash variety with resistance to two major virus pathogens. Another major goal for Seminis is implementing biotechnology to improve various aspects of fruit quality including viscosity, color, softening, and shelf life. Through our collaboration with Zeneca we have developed a high viscosity tomato, which was produced by suppressing endogenous levels of polyglacturonase. This processed food product is currently on the market in the United Kingdom.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 235-242 ◽  
Author(s):  
Fuh-Jyh Jan ◽  
Carmen Fagoaga ◽  
Sheng-Zhi Pang ◽  
Dennis Gonsalves

We showed previously that transgenic plants with the green fluorescent protein (GFP) gene fused to segments of the nucleocapsid (N) gene of tomato spotted wilt virus (TSWV) displayed post-transcriptional gene silencing of the GFP and N gene segments and resistance to TSWV. These results suggested that a chimeric transgene composed of viral gene segments might confer multiple virus resistance in transgenic plants. To test this hypothesis and to determine the minimum length of the N gene that could trans-inactivate the challenging TSWV, transgenic plants were developed that contained GFP fused with N gene segments of 24–453 bp. Progeny from these plants were challenged with: (i) a chimeric tobacco mosaic virus containing the GFP gene, (ii) a chimeric tobacco mosaic virus with GFP plus the N gene of TSWV and (iii) TSWV. A number of transgenic plants expressing the transgene with GFP fused to N gene segments from 110 to 453 bp in size were resistant to these viruses. Resistant plants exhibited post-transcriptional gene silencing. In contrast, all transgenic lines with transgenes consisting of GFP fused to N gene segments of 24 or 59 bp were susceptible to TSWV, even though the transgene was post-transcriptionally silenced. Thus, virus resistance and post-transcriptional gene silencing were uncoupled when the N gene segment was 59 bp or less. These results provide evidence that multiple virus resistance is possible through the simple strategy of linking viral gene segments to a silencer DNA such as GFP.


Sign in / Sign up

Export Citation Format

Share Document