Faculty Opinions recommendation of Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection.

Author(s):  
Vicente Planelles
2008 ◽  
Vol 14 (3) ◽  
pp. 266-274 ◽  
Author(s):  
Julien van Grevenynghe ◽  
Francesco A Procopio ◽  
Zhong He ◽  
Nicolas Chomont ◽  
Catherine Riou ◽  
...  

PLoS Medicine ◽  
2008 ◽  
Vol 5 (1) ◽  
pp. e11 ◽  
Author(s):  
Andrew Yates ◽  
Jaroslav Stark ◽  
Nigel Klein ◽  
Rustom Antia ◽  
Robin Callard

2006 ◽  
Vol 203 (4) ◽  
pp. 865-870 ◽  
Author(s):  
Jason F. Kreisberg ◽  
Wes Yonemoto ◽  
Warner C. Greene

Human immunodeficiency virus (HIV) can infect resting CD4 T cells residing in lymphoid tissues but not those circulating in peripheral blood. The molecular mechanisms producing this difference remain unknown. We explored the potential role of the tissue microenvironment and its influence on the action of the antiviral factor APOBEC3G (A3G) in regulating permissivity to HIV infection. We found that endogenous IL-2 and -15 play a key role in rendering resident naive CD4 T cells susceptible to HIV infection. Infection of memory CD4 T cells also requires endogenous soluble factors, but not IL-2 or -15. A3G is found in a high molecular mass complex in HIV infection–permissive, tissue-resident naive CD4 T cells but resides in a low molecular mass form in nonpermissive, blood-derived naive CD4 T cells. Upon treatment with endogenous soluble factors, these cells become permissive for HIV infection, as low molecular mass A3G is induced to assemble into high molecular mass complexes. These findings suggest that in lymphoid tissues, endogenous soluble factors, likely including IL-2 and -15 and others, stimulate the formation of high molecular mass A3G complexes in tissue-resident naive CD4 T cells, thereby relieving the potent postentry restriction block for HIV infection conferred by low molecular mass A3G.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009522
Author(s):  
Orion Tong ◽  
Gabriel Duette ◽  
Thomas Ray O’Neil ◽  
Caroline M. Royle ◽  
Hafsa Rana ◽  
...  

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, PDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


Immunity ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 91-105.e4 ◽  
Author(s):  
Thomas Ciucci ◽  
Melanie S. Vacchio ◽  
Yayi Gao ◽  
Francesco Tomassoni Ardori ◽  
Julian Candia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document