Faculty Opinions recommendation of Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo.

Author(s):  
Kent Berridge ◽  
Eric Jackson
2008 ◽  
Vol 28 (42) ◽  
pp. 10496-10508 ◽  
Author(s):  
L. Massi ◽  
I. Elezgarai ◽  
N. Puente ◽  
L. Reguero ◽  
P. Grandes ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenglin Zhao ◽  
Sang Chan Kim ◽  
Yu Jiao ◽  
Yefu Wang ◽  
Bong Hyo Lee ◽  
...  

Ethanol withdrawal (EtOHW) alters the pattern of neurohormonal and behavioral response toward internal and external stimuli, which mediates relapse to alcohol use even after a long period of abstinence. Increased noradrenergic signaling from the nucleus tractus solitarius (NTS) to the bed nucleus of the stria terminalis (BNST) during EtOHW underlies withdrawal-induced anxiety, while nitric oxide synthase (NOS) inhibitors injected into the periaqueductal area attenuate EtOHW-induced anxiety. Therefore, this study investigated the involvement of NOS within the NTS in anxiety and increased norepinephrine (NE) release in the BNST during protracted EtOHW in rats exposed to a mild stress. Rats were intraperitoneally administered 3 g/kg/day EtOH for 21 days followed by 28 days of withdrawal, and on the 28th day of withdrawal, the rats were subjected to restraint stress for 7 minutes. The elevated plus maze test was employed to evaluate anxiety-like behavior in rats, and in vivo microdialysis was used to measure the extracellular NE level in the BNST. In elevated plus maze tests, EtOHW rats but not EtOH-naive rats exhibited anxiety-like behavior when challenged with 7-minute mild restraint stress, which was, respectively, mitigated by prior intra-NTS infusion of the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), nonselective NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), or selective neuronal NOS (nNOS) inhibitor 7-nitroindazole (7-NI). Each of these agents also decreased the plasma corticosterone levels in EtOHW rats. In in vivo microdialysis, prior intra-NTS infusion of carboxy-PTIO, L-NAME, or 7-NI attenuated the mild stress-induced NE release in the BNST of EtOHW rats. Additionally, EtOHW rats showed increased solitary nNOS gene and protein expression. Moreover, the anxiolytic effect of intra-NTS administration of 7-NI was abolished by subsequent intra-NTS administration of sodium nitroprusside. These results suggest that elevation of solitary nitric oxide signaling derived from nNOS mediates stress-precipitated anxiety and norepinephrine release in the BNST during protracted EtOHW.


2012 ◽  
Vol 107 (6) ◽  
pp. 1731-1737 ◽  
Author(s):  
Natalie R. Herr ◽  
Jinwoo Park ◽  
Zoé A. McElligott ◽  
Anna M. Belle ◽  
Regina M. Carelli ◽  
...  

Norepinephrine (NE) is an easily oxidized neurotransmitter that is found throughout the brain. Considerable evidence suggests that it plays an important role in neurocircuitry related to fear and anxiety responses. In certain subregions of the bed nucleus of the stria terminalis (BNST), NE is found in large amounts. In this work we probed differences in electrically evoked release of NE and its regulation by the norepinephrine transporter (NET) and the α2-adrenergic autoreceptor (α2-AR) in two regions of the BNST of anesthetized rats. NE was monitored in the dorsomedial BNST (dmBNST) and ventral BNST (vBNST) by fast-scan cyclic voltammetry at carbon fiber microelectrodes. Pharmacological agents were introduced either by systemic application (intraperitoneal injection) or by local application (iontophoresis). The iontophoresis barrels were attached to a carbon fiber microelectrode to allow simultaneous detection of evoked NE release and quantitation of iontophoretic delivery. Desipramine (DMI), an inhibitor of NET, increased evoked release and slowed clearance of released NE in both regions independent of the mode of delivery. However, the effects of DMI were more robust in the vBNST than in the dmBNST. Similarly, the α2-AR autoreceptor inhibitor idazoxan (IDA) enhanced NE release in both regions but to a greater extent in the vBNST by both modes of delivery. Since both local application by iontophoresis and systemic application of IDA had similar effects on NE release, our results indicate that terminal autoreceptors play a predominant role in the inhibition of subsequent release.


1995 ◽  
Vol 688 (1-2) ◽  
pp. 242-246 ◽  
Author(s):  
Karel Pacak ◽  
Richard McCarty ◽  
Miklos Palkovits ◽  
Irwin J. Kopin ◽  
David S. Goldstein

2019 ◽  
Author(s):  
Max Bjorni ◽  
Natalie G. Rovero ◽  
Elissa R. Yang ◽  
Andrew Holmes ◽  
Lindsay R. Halladay

AbstractWhile results from many past studies have implicated the bed nucleus of the stria terminalis (BNST) in mediating the expression of sustained negative affect, recent studies have highlighted a more complex role for BNST that includes aspects of fear learning in addition to defensive responding. As BNST is thought to encode ambiguous or unpredictable threat, it seems plausible that it may be involved in encoding early cued fear learning, especially immediately following a first tone-shock pairing when the CS-US contingency is not fully apparent. To investigate this, we conducted in vivo electrophysiological recording studies to examine neural dynamics of BNST units during cued fear acquisition and recall. We identified two functionally distinct subpopulations of BNST neurons that encode the intertrial interval (ITI) and seem to contribute to within- and across-session fear learning. “Ramping” cell activity during cued fear acquisition parallels the increase in freezing expression as mice learn the CS-US contingency, while “Phasic” cells encode post-shock (USpost) periods (30 s following encounter with footshock) only during early trials. Importantly, the magnitude of Phasic unit responsivity to the first USpost period predicted not only freezing expression in response to the subsequent CS during acquisition, but also CS freezing evoked 24 hr later during CS retrieval. These findings suggest for the first time that BNST activity may serve as an instructive signal during cued fear learning.


Sign in / Sign up

Export Citation Format

Share Document