Faculty Opinions recommendation of Increased H-reflex response induced by intramuscular electrical stimulation of latent myofascial trigger points.

Author(s):  
Mike Cummings
2009 ◽  
Vol 27 (4) ◽  
pp. 150-154 ◽  
Author(s):  
Hong-You Ge ◽  
Mariano Serrao ◽  
Ole K Andersen ◽  
Thomas Graven-Nielsen ◽  
Lars Arendt-Nielsen

Background Myofascial trigger points (MTrPs) present with mechanical hyperalgesia and allodynia. No electrophysiological evidence exists as to the excitability of muscle spindle afferents at myofascial trigger points MTrPs. The purpose of this current study was to explore whether an H-reflex response could be elicited from intramuscular electrical stimulation. If so, to assess the possibility of increased reflex response at MTrPs. Methods The H-reflex latency and the conduction velocity were first determined from electrical stimulation of the tibial nerve in 13 healthy subjects. Then an intramuscular monopolar needle electrode was inserted randomly into a latent MTrP or a non-MTrP in the gastrocnemius muscle. Electrical stimuli at different intensities were delivered via the intramuscular recording electrode to the MTrP or non-MTrP. Results The average conduction velocity (44.3 ± 1.5 m/s) of the electrical stimulation of tibial nerve was similar (p>0.05) with the conduction velocity (43.9 ± 1.4 m/s) of intramuscular electrical stimulation. The intramuscular H-reflex at MTrPs was higher in amplitude than non-MTrPs (p<0.001). The reflex threshold was lower for MTrPs than non-MTrPs (p<0.001). Conclusion The current study provides first electrophysiological evidence that intramuscular electrical stimulation can evoke H-reflex, and that higher H-reflex amplitude and lower H-reflex threshold exist at MTrPs than non-MTrPs respectively, suggesting that muscle spindle afferents may be involved in the pathophysiology of MTrPs.


2014 ◽  
Vol 116 (12) ◽  
pp. 1623-1631 ◽  
Author(s):  
Steffen Vangsgaard ◽  
Janet L. Taylor ◽  
Ernst A. Hansen ◽  
Pascal Madeleine

Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group ( n = 15) and a reference group ( n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5–37.3]; P = 0.01), MVC force (26.4% [15.0–37.7]; P < 0.01), and RFD (24.6% [3.2–46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group ( r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training.


2008 ◽  
Vol 187 (4) ◽  
pp. 623-629 ◽  
Author(s):  
Hong-You Ge ◽  
Yang Zhang ◽  
Shellie Boudreau ◽  
Shou-Wei Yue ◽  
Lars Arendt-Nielsen

1956 ◽  
Vol 185 (1) ◽  
pp. 142-144 ◽  
Author(s):  
Bernard Metz

Small doses of the potent anticholinesterase, TEPP, introduced via a cisternal puncture produce a marked potentiation of the respiratory reflex response induced by electrical stimulation of Hering's nerve in the dog. Larger doses of TEPP cause an inhibition of this reflex followed by respiratory failure. These experiments lend suggestive evidence that a neurohumoral mediator (e.g. acetylcholine) may be a component of respiratory control.


2020 ◽  
Vol 38 (2) ◽  
pp. 109-116
Author(s):  
Lin Liu ◽  
Qiang-Min Huang ◽  
Qing-Guang Liu ◽  
Thi-Tham Nguyen ◽  
Jian-Qin Yan ◽  
...  

Objectives: To determine how muscle spindles are involved in the pathophysiology of chronic myofascial trigger spots (MTrSs, similar to myofascial trigger points) in a rat injury model according to the characteristics of the Hoffmann reflex (H-reflex) and the anatomical relationship between muscle spindles and MTrSs. Methods: 16 male Sprague-Dawley rats (7 weeks old) were randomly divided into experimental and control groups. A blunt strike injury and eccentric exercise were applied to the gastrocnemius muscle of rats in the experimental group once a week for 8 weeks as a MTrS modelling intervention. Subsequently, the rats were reared normally and rested for 4 weeks. At the end of the 12th week, the rats were examined for the presence of MTrSs defined by the detection of a palpable taut band exhibiting both a local twitch response and spontaneous electrical activity. After modelling, evocation of the H-reflex and morphological examination of muscle spindles and MTrSs were conducted. Results: The threshold (0.35±0.04 mA) of the H-reflex and latency (1.24±0.18 ms) of the M wave recorded at MTrSs were not significantly different to those at non-MTrSs (P>0.05). Compared with non-MTrSs, a lower Mmax (4.28±1.27 mV), higher Hmax (median (IQR) 0.95 (0.80–1.08) mV) and Hmax/Mmax (median (IQR) 0.21 (0.16–0.40)), and shorter H wave latency (4.60±0.89 ms) were recorded at MTrSs (P<0.05). Morphologically, there was a close anatomical relationship between the MTrS cells and the muscle spindles. Discussion: Compared with normal muscles, the H-reflex myoelectrical activity was enhanced and some muscle spindles might have been influenced by active MTrSs. Thus, muscle spindles may play an important role in the pathological mechanism underlying myofascial trigger points.


Pain ◽  
2008 ◽  
Vol 139 (2) ◽  
pp. 260-266 ◽  
Author(s):  
John Z. Srbely ◽  
James P. Dickey ◽  
Mark Lowerison ◽  
Michelle A. Edwards ◽  
Paul S. Nolet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document