Faculty Opinions recommendation of A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea.

Author(s):  
Tamar Barkay
2013 ◽  
Vol 289 (3) ◽  
pp. 1675-1687 ◽  
Author(s):  
Ahmed Sayed ◽  
Mohamed A. Ghazy ◽  
Ari J. S. Ferreira ◽  
João C. Setubal ◽  
Felipe S. Chambergo ◽  
...  

A unique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg2+, and efficiently detoxifies Hg2+in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Mohamad Maged ◽  
Ahmed El Hosseiny ◽  
Mona Kamal Saadeldin ◽  
Ramy K. Aziz ◽  
Eman Ramadan

ABSTRACTThe lower convective layer (LCL) of the Atlantis II brine pool of the Red Sea is a unique environment in terms of high salinity, temperature, and high concentrations of heavy metals. Mercuric reductase enzymes functional in such extreme conditions could be considered a potential tool in the environmental detoxification of mercurial poisoning and might alleviate ecological hazards in the mining industry. Here, we constructed a mercuric reductase library from Atlantis II, from which we identified genes encoding two thermostable mercuric reductase (MerA) isoforms: one is halophilic (designated ATII-LCL) while the other is not (designated ATII-LCL-NH). The ATII-LCL MerA has a short motif composed of four aspartic acids (4D414–417) and two characteristic signature boxes that played a crucial role in its thermal stability. To further understand the mechanism behind the thermostability of the two studied enzymes, we mutated the isoform ATII-LCL-NH and found that the substitution of 2 aspartic acids (2D) at positions 415 and 416 enhanced the thermal stability, while other mutations had the opposite effect. The 2D mutant showed superior thermal tolerance, as it retained 81% of its activity after 10 min of incubation at 70°C. A three-dimensional structure prediction revealed newly formed salt bridges and H bonds in the 2D mutant compared to the parent molecule. To the best of our knowledge, this study is the first to rationally design a mercuric reductase with enhanced thermal stability, which we propose to have a strong potential in the bioremediation of mercurial poisoning.IMPORTANCEThe Red Sea is an attractive environment for bioprospecting. There are 25 brine-filled deeps in the Red Sea. The Atlantis II brine pool is the biggest and hottest of such hydrothermal ecosystems. We generated an environmental mercuric reductase library from the lowermost layer of the Atlantis II brine pool, in which we identified two variants of the mercuric reductase enzyme (MerA). One is the previously described halophilic and thermostable ATII-LCL MerA and the other is a nonhalophilic relatively less thermostable enzyme, designated ATII-LCL-NH MerA. We used the ATII-LCL-NH enzyme as a parent molecule to locate the amino acid residues involved in the noticeably higher thermotolerance of the homolog ATII-LCL MerA. Moreover, we designed a novel enzyme with superior thermal stability. This enzyme might have strong potential in the bioremediation of mercuric toxicity.


1907 ◽  
Vol 64 (1644supp) ◽  
pp. 8-9
Author(s):  
Harold J. Shepstone
Keyword(s):  
Red Sea ◽  

Sign in / Sign up

Export Citation Format

Share Document