Thermal Stability
Recently Published Documents


TOTAL DOCUMENTS

31608
(FIVE YEARS 10772)

H-INDEX

167
(FIVE YEARS 58)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 261
Author(s):  
Shih-Hsuan Chen ◽  
Huai-Sheng Chin ◽  
Yu-Ruei Kung

A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene, was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting polyamides exhibited good solubility in polar organic solvents and, further, can be made into transparent films. They had appropriate levels of thermal stability with moderately high glass-transition values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical studies of these polymer films showed that these polyamides have both p- and n-dopable states as a result of the formation of radical cations and anions of the electroactive pyrene moieties.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 260
Author(s):  
Costas Tsioptsias ◽  
Konstantinos Leontiadis ◽  
Stavros Messaritakis ◽  
Aikaterini Terzaki ◽  
Panagiotis Xidas ◽  
...  

Isotactic polypropylene (PP) composite drawn fibers were prepared using melt extrusion and high-temperature solid-state drawing at a draw ratio of 7. Five different fillers were used as reinforcement agents (microtalc, ultrafine talc, wollastonite, attapulgite and single-wall carbon nanotubes). In all the prepared samples, antioxidant was added, while all samples were prepared with and without using PP grafted with maleic anhydride as compatibilizer. Material characterization was performed by tensile tests, differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. Attapulgite composite fibers exhibited poor results in terms of tensile strength and thermal stability. The use of ultrafine talc particles yields better results, in terms of thermal stability and tensile strength, compared to microtalc. Better results were observed using needle-like fillers, such as wollastonite and single-wall carbon nanotubes, since, as was previously observed, high aspect ratio particles tend to align during the drawing process and, thus, contribute to a more symmetrical distribution of stresses. Competitive and synergistic effects were recognized to occur among the additives and fillers, such as the antioxidant effect being enhanced by the addition of the compatibilizer, while the antioxidant itself acts as a compatibilizing agent.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 243
Author(s):  
Shuai Yuan ◽  
Jiayuan Liang ◽  
Yanmin Zhang ◽  
Hongyu Han ◽  
Tianyi Jiang ◽  
...  

Xanthan gum is prone to thermal oxidative degradation, which limits its applications. However, conformational changes in xanthan gum and appropriate stabilizers may improve its thermal stability. Therefore, in this study, we aimed to establish a strategy to maintain the viscosity of xanthan gum during long-term storage at high temperatures. We modified the original strain used for xanthan gum production by genetic engineering and added stabilizers during the production process. The structure and thermal stability of the resulting xanthan gum samples were then determined. Pyruvyl deficiency, combined with the addition of sodium sulfite and glyoxal during the production process, was found to significantly improve the maintenance of viscosity. The apparent viscosity of the new xanthan gum solution remained above 100 mPa·s after being stored at 90 °C for 48 days. Fourier-transform infrared spectra and scanning electron microscopy images showed that pyruvate-free xanthan gum with added stabilizers had more extensive cross-linking than natural xanthan gum. In conclusion, these findings may contribute to the use of xanthan gum in applications that require high temperatures for a long period of time.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 187
Author(s):  
Traian Zaharescu ◽  
Carmen Mateescu

The EPDM (ethylene-propylene-diene monomer) hybrids with improved thermal and radiation strengths containing 1 and 5 phr of polyhedral oligomeric silsesquioxane (vinyl-POSS, Ov-POSS) and/or 2 phr of microalgae (Chlorella vulgaris (CV) and Spirulinaplatensis (SP)) powders were investigated in respect to their thermal stability after γ-irradiation. The material durability under accelerated degradation was qualified by chemiluminescence and gelation, which prove the contribution of inorganic filler and microalgae extracts on the increase of hybrid thermal stability, as well as the interaction between added components (POSS and CV or SP). The activation energies and the durabilities under accelerated degradation were calculated, indicating their suitable usage as appropriate materials in various applications. The reported results indicate the improvement effect of both microalgal powders on the oxidation strength, but the contribution of Spirulinaplatensis grabs attention on its efficient effects upon the prevention of degradation under accelerated aging conditions. The thermal performances of the tested EPDM based hybrids are remarkably ameliorated, if the certain formulation includes Ov-POSS (5 phr) and Spirulinaplatensis (2 phr), certifying its suitability for the pertinent applications.


2022 ◽  
Vol 320 ◽  
pp. 126203
Author(s):  
Yiqun Fang ◽  
Aojing Xue ◽  
Fengqiang Wang ◽  
Zhijun Zhang ◽  
Yongming Song ◽  
...  

10.6036/10327 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 98-103
Author(s):  
XIAN WANG ◽  
JINLONG ZHUO ◽  
TIANQING XING ◽  
Xingran Wang

In order to reduce flammability, smoke release and enhance thermal stability of epoxy resin (EP), iron powder is mixed with graphene oxide/ epoxy resin (GO/EP) composite by mechanical blending. The combustion performance of composite material is investigated through limiting oxygen index (LOI), Underwriters Laboratory (UL)-94 test, and cone calorimeter test (CCT). Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and scanning electron microscope (SEM) are also used to explore the mechanism of flame retardancy and smoke suppression. Results show that, with the addition of 0.5% mass fraction of GO and the corresponding iron powder combination (EP3 sample), the LOI value can achieve 32.5% while reaching the UL-94 V0 rating. Compare with EP0, the peaks of heat release rate, smoke production rate, and smoke factor values of EP3 are decreased by 42%, 60%, and 50%, respectively. The char and TG-FTIR data of EP3 reveal that it has a more compact structure, good thermal stability, and produce fewer toxic gases and smoke. Reduction of GO could inhibit the degradation of EP, and iron catalyzes the formation of carbonaceous char on the surface. Thus, the thermal stability and flame retardancy of EP are improved significantly. This study provides a suitable way to prepare graphene/EP composites that contain iron catalyst and can be extended to the industrial manufacture of flame retardant polymer composites. Keywords: iron powder; epoxy resin; graphene oxide; flame retardant; thermal stability


Sign in / Sign up

Export Citation Format

Share Document