Faculty Opinions recommendation of Resurrecting surviving Neandertal lineages from modern human genomes.

Author(s):  
Sarah Tishkoff ◽  
Joseph Lachance
Keyword(s):  
2021 ◽  
Vol 7 (29) ◽  
pp. eabc0776
Author(s):  
Nathan K. Schaefer ◽  
Beth Shapiro ◽  
Richard E. Green

Many humans carry genes from Neanderthals, a legacy of past admixture. Existing methods detect this archaic hominin ancestry within human genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes. Each of these methods is limited in sensitivity and scalability. We describe a new ancestral recombination graph inference algorithm that scales to large genome-wide datasets and demonstrate its accuracy on real and simulated data. We then generate a genome-wide ancestral recombination graph including human and archaic hominin genomes. From this, we generate a map within human genomes of archaic ancestry and of genomic regions not shared with archaic hominins either by admixture or incomplete lineage sorting. We find that only 1.5 to 7% of the modern human genome is uniquely human. We also find evidence of multiple bursts of adaptive changes specific to modern humans within the past 600,000 years involving genes related to brain development and function.


2020 ◽  
Vol 37 (9) ◽  
pp. 2531-2548
Author(s):  
Gerrald A Lodewijk ◽  
Diana P Fernandes ◽  
Iraklis Vretzakis ◽  
Jeanne E Savage ◽  
Frank M J Jacobs

Abstract Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.


2019 ◽  
Vol 36 (8) ◽  
pp. 1846-1846
Author(s):  
Joseph Caspermeyer
Keyword(s):  

PLoS Genetics ◽  
2014 ◽  
Vol 10 (11) ◽  
pp. e1004790 ◽  
Author(s):  
Yann Lesecque ◽  
Sylvain Glémin ◽  
Nicolas Lartillot ◽  
Dominique Mouchiroud ◽  
Laurent Duret

2017 ◽  
Author(s):  
Benedict Paten ◽  
Adam M. Novak ◽  
Jordan M. Eizenga ◽  
Garrison Erik

AbstractThe human reference genome is part of the foundation of modern human biology, and a monumental scientific achievement. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human genomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned from these cohorts, many using ideas implicitly or explicitly borrowed from graph based models. Here, we survey various projects underway to build and apply these graph based structures—which we collectively refer to as genome graphs—and discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected to produce.


2017 ◽  
Vol 9 (6) ◽  
pp. 1567-1581 ◽  
Author(s):  
Joel Sharbrough ◽  
Justin C. Havird ◽  
Gregory R. Noe ◽  
Jessica M. Warren ◽  
Daniel B. Sloan
Keyword(s):  

2020 ◽  
Author(s):  
Yassine Souilmi ◽  
M. Elise Lauterbur ◽  
Ray Tobler ◽  
Christian D. Huber ◽  
Angad S. Johar ◽  
...  

SummaryThe current SARS-CoV-2 pandemic has emphasized the vulnerability of human populations to novel viral pressures, despite the vast array of epidemiological and biomedical tools now available. Notably, modern human genomes contain evolutionary information tracing back tens of thousands of years, which may help identify the viruses that have impacted our ancestors – pointing to which viruses have future pandemic potential. Here, we apply evolutionary analyses to human genomic datasets to recover selection events involving tens of human genes that interact with coronaviruses, including SARS-CoV-2, that started 25,000 years ago. These adaptive events were limited to ancestral East Asian populations, the geographical origin of several modern coronavirus epidemics. An arms race with an ancient corona-like virus may thus have taken place in ancestral East Asian populations. By learning more about our ancient viral foes, our study highlights the promise of evolutionary information to combat the pandemics of the future.


Sign in / Sign up

Export Citation Format

Share Document