scholarly journals Faculty Opinions recommendation of How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion.

Author(s):  
Mark Marsh
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Luke H Chao ◽  
Jaebong Jang ◽  
Adam Johnson ◽  
Anthony Nguyen ◽  
Nathanael S Gray ◽  
...  

Dengue virus (DV) is a compact, icosahedrally symmetric, enveloped particle, covered by 90 dimers of envelope protein (E), which mediates viral attachment and membrane fusion. Fusion requires a dimer-to-trimer transition and membrane engagement of hydrophobic ‘fusion loops’. We previously characterized the steps in membrane fusion for the related West Nile virus (WNV), using recombinant, WNV virus-like particles (VLPs) for single-particle experiments (Chao et al., 2014). Trimerization and membrane engagement are rate-limiting; fusion requires at least two adjacent trimers; availability of competent monomers within the contact zone between virus and target membrane creates a trimerization bottleneck. We now report an extension of that work to dengue VLPs, from all four serotypes, finding an essentially similar mechanism. Small-molecule inhibitors of dengue virus infection that target E block its fusion-inducing conformational change. We show that ~12–14 bound molecules per particle (~20–25% occupancy) completely prevent fusion, consistent with the proposed mechanism.


2018 ◽  
Author(s):  
Luke H. Chao ◽  
Jaebong Jang ◽  
Adam Johnson ◽  
Anthony Nguyen ◽  
Nathanael S. Gray ◽  
...  

AbstractDengue virus (DV) is a compact, icoshedrally symmetric, enveloped particle, covered by 90 dimers of envelope protein (E), which mediates viral attachment and membrane fusion. Fusion requires a dimer-to-trimer transition and membrane engagement of hydrophobic “fusion loops”. We previously characterized the steps in membrane fusion for the related West Nile virus (WNV), using recombinant, WNV virus-like particles (VLPs) for single-particle experiments. Trimerization and membrane engagement are rate-limiting; fusion requires at least two adjacent trimers; availability of competent monomers within the contact zone between virus and target membrane creates a trimerization bottleneck. We have extended that work to dengue VLPs, from all four DV serotypes, finding an essentially similar mechanism. Small-molecule inhibitors of DV infection that target E block its fusion-inducing conformation change. We show that ∼15 bound molecules per particle (∼8.5 % occupancy) completely prevent fusion, in accord with the proposed mechanism and the likely inhibitor binding site on E.Impact statementSingle-particle studies of dengue-virus membrane fusion and the effect of small-molecule inhibitors of infection clarify the viral fusion mechanism.


2020 ◽  
Vol 5 (12) ◽  
pp. 1532-1541
Author(s):  
Christopher D. Ma ◽  
Michio Imamura ◽  
Daniel C. Talley ◽  
Adam Rolt ◽  
Xin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document