vector competence
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 279)

H-INDEX

57
(FIVE YEARS 13)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Peter Hodoameda ◽  
Linus Addae ◽  
Rollie J. Clem

The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.


2022 ◽  
Vol 2 ◽  
Author(s):  
Demba Kodindo Israël ◽  
Cheick Amadou Coulibaly ◽  
Ibrahim Moussa Sissoko ◽  
Bourama Traoré ◽  
André B. B. Wilke ◽  
...  

Leishmaniasis transmitted by sandflies is an important vector-borne disease. In Chad, information on sandflies is outdated, and so this study was designed to update the sandfly fauna. Sandflies were collected in five health districts representing two geoclimatic zones using sticky traps and pyrethrum sprays in indoor and peridomestic habitats between September 2019 and December 2020. All collected sandfly specimens were identified based on species-level morphological characters. A total of 2,015 specimens belonging to 13 species of sandflies (one Phlebotomus and twelve Sergentomyia) were collected and identified. The vector of human cutaneous leishmaniasis, Phlebotomus duboscqi, represents 0.65% of all collected sandflies and is the only representative of the Phlebotomus genus to be collected predominantly inside human dwellings. Phlebotomus orientalis, the vector of visceral leishmaniasis previously collected in Chad in 1976 was not found in this study. Sergentomyia clydei, Sergentomyia schwetzi, Sergentomyia antennata and Sergentomyia africana were the most abundant species collected with 44.71%; 22.73%; 16.03% and 11.17%, respectively. Sergentomyia schwetzi and Sergentomyia dubia, the two species involved in the transmission of canine leishmaniasis, were found in five and four study sites respectively. According to our results, the sandfly fauna of the two geoclimatic zones of Chad is comprised of 13 species. Our data showed that, unlike P. orientalis which was not found, P. duboscqi is present in four of the five sites surveyed. Therefore, these areas are at risk and remain potential foci of cutaneous leishmaniasis. However, the need for further studies such as vector species detection, their seasonal fluctuations and their vector competence.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010075
Author(s):  
Giulia Mencattelli ◽  
Marie Henriette Dior Ndione ◽  
Roberto Rosà ◽  
Giovanni Marini ◽  
Cheikh Tidiane Diagne ◽  
...  

Background West Nile virus is a mosquito-borne flavivirus which has been posing continuous challenges to public health worldwide due to the identification of new lineages and clades and its ability to invade and establish in an increasing number of countries. Its current distribution, genetic variability, ecology, and epidemiological pattern in the African continent are only partially known despite the general consensus on the urgency to obtain such information for quantifying the actual disease burden in Africa other than to predict future threats at global scale. Methodology and principal findings References were searched in PubMed and Google Scholar electronic databases on January 21, 2020, using selected keywords, without language and date restriction. Additional manual searches of reference list were carried out. Further references have been later added accordingly to experts’ opinion. We included 153 scientific papers published between 1940 and 2021. This review highlights: (i) the co-circulation of WNV-lineages 1, 2, and 8 in the African continent; (ii) the presence of diverse WNV competent vectors in Africa, mainly belonging to the Culex genus; (iii) the lack of vector competence studies for several other mosquito species found naturally infected with WNV in Africa; (iv) the need of more competence studies to be addressed on ticks; (iv) evidence of circulation of WNV among humans, animals and vectors in at least 28 Countries; (v) the lack of knowledge on the epidemiological situation of WNV for 19 Countries and (vii) the importance of carrying out specific serological surveys in order to avoid possible bias on WNV circulation in Africa. Conclusions This study provides the state of art on WNV investigation carried out in Africa, highlighting several knowledge gaps regarding i) the current WNV distribution and genetic diversity, ii) its ecology and transmission chains including the role of different arthropods and vertebrate species as competent reservoirs, and iii) the real disease burden for humans and animals. This review highlights the needs for further research and coordinated surveillance efforts on WNV in Africa.


2022 ◽  
Vol 8 ◽  
Author(s):  
Benjamin Cull ◽  
Nicole Y. Burkhardt ◽  
Xin-Ru Wang ◽  
Cody J. Thorpe ◽  
Jonathan D. Oliver ◽  
...  

Ixodes scapularis is the primary vector of tick-borne pathogens in North America but notably does not transmit pathogenic Rickettsia species. This tick harbors the transovarially transmitted endosymbiont Rickettsia buchneri, which is widespread in I. scapularis populations, suggesting that it confers a selective advantage for tick survival such as providing essential nutrients. The R. buchneri genome includes genes with similarity to those involved in antibiotic synthesis. There are two gene clusters not found in other Rickettsiaceae, raising the possibility that these may be involved in excluding pathogenic bacteria from the tick. This study explored whether the R. buchneri antibiotic genes might exert antibiotic effects on pathogens associated with I. scapularis. Markedly reduced infectivity and replication of the tick-borne pathogens Anaplasma phagocytophilum, R. monacensis, and R. parkeri were observed in IRE11 tick cells hosting R. buchneri. Using a fluorescent plate reader assay to follow infection dynamics revealed that the presence of R. buchneri in tick cells, even at low infection rates, inhibited the growth of R. parkeri by 86–100% relative to R. buchneri-free cells. In contrast, presence of the low-pathogenic species R. amblyommatis or the endosymbiont R. peacockii only partially reduced the infection and replication of R. parkeri. Addition of host-cell free R. buchneri, cell lysate of R. buchneri-infected IRE11, or supernatant from R. buchneri-infected IRE11 cultures had no effect on R. parkeri infection and replication in IRE11, nor did these treatments show any antibiotic effect against non-obligate intracellular bacteria E. coli and S. aureus. However, lysate from R. buchneri-infected IRE11 challenged with R. parkeri showed some inhibitory effect on R. parkeri infection of treated IRE11, suggesting that challenge by pathogenic rickettsiae may induce the antibiotic effect of R. buchneri. This research suggests a potential role of the endosymbiont in preventing other rickettsiae from colonizing I. scapularis and/or being transmitted transovarially. The confirmation that the observed inhibition is linked to R. buchneri's antibiotic clusters requires further investigation but could have important implications for our understanding of rickettsial competition and vector competence of I. scapularis for rickettsiae.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Apolline Maitre ◽  
Alejandra Wu-Chuang ◽  
Justė Aželytė ◽  
Vaidas Palinauskas ◽  
Lourdes Mateos-Hernández ◽  
...  

AbstractHuman and animal pathogens that are transmitted by arthropods are a global concern, particularly those vectored by ticks (e.g. Borrelia burgdorferi and tick-borne encephalitis virus) and mosquitoes (e.g. malaria and dengue virus). Breaking the circulation of pathogens in permanent foci by controlling vectors using acaricide-based approaches is threatened by the selection of acaricide resistance in vector populations, poor management practices and relaxing of control measures. Alternative strategies that can reduce vector populations and/or vector-mediated transmission are encouraged worldwide. In recent years, it has become clear that arthropod-associated microbiota are involved in many aspects of host physiology and vector competence, prompting research into vector microbiota manipulation. Here, we review how increased knowledge of microbial ecology and vector-host interactions is driving the emergence of new concepts and tools for vector and pathogen control. We focus on the immune functions of host antibodies taken in the blood meal as they can target pathogens and microbiota bacteria within hematophagous arthropods. Anti-microbiota vaccines are presented as a tool to manipulate the vector microbiota and interfere with the development of pathogens within their vectors. Since the importance of some bacterial taxa for colonization of vector-borne pathogens is well known, the disruption of the vector microbiota by host antibodies opens the possibility to develop novel transmission-blocking vaccines.


2022 ◽  
Author(s):  
Xinyue Gu ◽  
Perran A Ross ◽  
Julio Rodriguez-Andres ◽  
Katie L. Robinson ◽  
Qiong Yang ◽  
...  

Mosquito-borne diseases such as dengue, Zika and chikungunya remain a major cause of morbidity and mortality across tropical regions. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito-borne diseases transmitted by Aedes aegypti. However, these strategies may be influenced by environmental temperature because wMel is vulnerable to heat stress. wMel infections in their native host Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Ae. aegypti mosquitoes. Here we successfully transferred a wMel variant (termed wMelM) originating from a field-collected D. melanogaster population from Victoria, Australia into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III) generated over ten years ago, and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, with stronger cytoplasmic incompatibility and maternal transmission when eggs were exposed to heat stress, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under standard laboratory conditions. Our results highlight phenotypic differences between closely related Wolbachia variants. wMelM shows potential as an alternative strain to wMel in dengue control programs in areas with strong seasonal temperature fluctuations.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Bárbara Aparecida Chaves ◽  
Raquel Soares Maia Godoy ◽  
Thaís Bonifácio Campolina ◽  
Ademir Bentes Vieira Júnior ◽  
Andréia da Costa Paz ◽  
...  

The successful spread and maintenance of the dengue virus (DENV) in mosquito vectors depends on their viral infection susceptibility, and parameters related to vector competence are the most valuable for measuring the risk of viral transmission by mosquitoes. These parameters may vary according to the viral serotype in circulation and in accordance with the geographic origin of the mosquito population that is being assessed. In this study, we investigated the effect of DENV serotypes (1–4) with regards to the infection susceptibility of five Brazilian Ae. aegypti populations from Manaus, the capital of the state of Amazonas, Brazil. Mosquitoes were challenged by oral infection with the DENV serotypes and then tested for the presence of the arbovirus using quantitative PCR at 14 days post-infection, which is the time point that corresponds to the extrinsic incubation period of Ae. aegypti when reared at 28 °C. Thus, we were able to determine the infection patterns for DENV-1, -2, -3 and -4 in the mosquito populations. The mosquitoes had both interpopulation and inter-serotype variation in their viral susceptibilities. All DENV serotypes showed a similar tendency to accumulate in the body in a greater amount than in the head/salivary gland (head/SG), which does not occur with other flaviviruses. For DENV-1, DENV-3, and DENV-4, the body viral load varied among populations, but the head/SG viral loads were similar. Differently for DENV-2, both body and head/SG viral loads varied among populations. As the lack of phenotypic homogeneity represents one of the most important reasons for the long-term fight against dengue incidence, we expect that this study will help us to understand the dynamics of the infection patterns that are triggered by the distinct serotypes of DENV in mosquitoes.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2507
Author(s):  
Stephanie Jansen ◽  
Dániel Cadar ◽  
Renke Lühken ◽  
Wolf Peter Pfitzner ◽  
Hanna Jöst ◽  
...  

The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastián Díaz ◽  
Carolina Camargo ◽  
Frank W. Avila

Abstract Background Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including fertility and vector competence, making manipulation of the bacterial community a promising method to control mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial composition found there to the well-described gut microbiota. Methods We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues assessed, bacterial metabolic pathway abundance was predicted. Results The community structure of the reproductive tract is unique compared to the gut. Asaia is the most prevalent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproductive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like energy production in mated tissues and siderophore synthesis in blood-fed female tissues. Conclusions Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in mated and blood-fed females. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document