scholarly journals Faculty Opinions recommendation of The entropic force generated by intrinsically disordered segments tunes protein function.

Author(s):  
Savvas Savvides
Nature ◽  
2018 ◽  
Vol 563 (7732) ◽  
pp. 584-588 ◽  
Author(s):  
Nicholas D. Keul ◽  
Krishnadev Oruganty ◽  
Elizabeth T. Schaper Bergman ◽  
Nathaniel R. Beattie ◽  
Weston E. McDonald ◽  
...  

2020 ◽  
Vol 477 (7) ◽  
pp. 1219-1225 ◽  
Author(s):  
Nikolai N. Sluchanko

Many major protein–protein interaction networks are maintained by ‘hub’ proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that ‘read’ the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts. Although recent studies established the biochemical and structural basis for the interaction of the 14-3-3 dimers with several phosphorylated clients, understanding their assembly with partners phosphorylated at multiple sites represents a challenge. Suboptimal sequence context around the phosphorylated residue may reduce binding affinity, resulting in quantitative differences for distinct phosphorylation sites, making hierarchy and priority in their binding rather uncertain. Recently, Stevers et al. [Biochemical Journal (2017) 474: 1273–1287] undertook a remarkable attempt to untangle the mechanism of 14-3-3 dimer binding to leucine-rich repeat kinase 2 (LRRK2) that contains multiple candidate 14-3-3-binding sites and is mutated in Parkinson's disease. By using the protein-peptide binding approach, the authors systematically analyzed affinities for a set of LRRK2 phosphopeptides, alone or in combination, to a 14-3-3 protein and determined crystal structures for 14-3-3 complexes with selected phosphopeptides. This study addresses a long-standing question in the 14-3-3 biology, unearthing a range of important details that are relevant for understanding binding mechanisms of other polyvalent proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Littmann ◽  
Michael Heinzinger ◽  
Christian Dallago ◽  
Tobias Olenyi ◽  
Burkhard Rost

AbstractKnowing protein function is crucial to advance molecular and medical biology, yet experimental function annotations through the Gene Ontology (GO) exist for fewer than 0.5% of all known proteins. Computational methods bridge this sequence-annotation gap typically through homology-based annotation transfer by identifying sequence-similar proteins with known function or through prediction methods using evolutionary information. Here, we propose predicting GO terms through annotation transfer based on proximity of proteins in the SeqVec embedding rather than in sequence space. These embeddings originate from deep learned language models (LMs) for protein sequences (SeqVec) transferring the knowledge gained from predicting the next amino acid in 33 million protein sequences. Replicating the conditions of CAFA3, our method reaches an Fmax of 37 ± 2%, 50 ± 3%, and 57 ± 2% for BPO, MFO, and CCO, respectively. Numerically, this appears close to the top ten CAFA3 methods. When restricting the annotation transfer to proteins with < 20% pairwise sequence identity to the query, performance drops (Fmax BPO 33 ± 2%, MFO 43 ± 3%, CCO 53 ± 2%); this still outperforms naïve sequence-based transfer. Preliminary results from CAFA4 appear to confirm these findings. Overall, this new concept is likely to change the annotation of proteins, in particular for proteins from smaller families or proteins with intrinsically disordered regions.


Sign in / Sign up

Export Citation Format

Share Document