scholarly journals Optimal Placement and Optimal Combination of DTC, STATCOM and Line Reconfiguration to Minimize the Power Loss in Distribution Networks

2019 ◽  
Vol 8 (4) ◽  
pp. 11631-11636 ◽  

Due to deregulation, exponential growth in the electricity demand, integration of renewable energy sources, lack of analytical computing facility and expansion of network increases the complexity with poor operation of the network. Existing analytical computing facility is failed to give efficient and accurate results for secure operation of the distribution network. Many researchers are working to give potential solution to improve the performance of network operation considering the real time variables. In this paper minimization of power loss is chosen as objective function. Considering the network parameters the optimal placements with different combination of DTC, STATCOM and line reconfiguration are tested on IEEE-15 bus system using MiPower simulation package. The obtained result shows more than 50% power loss reduction, which leads to efficient and stress free operation of the distribution networks.

Author(s):  
Suliman Khan ◽  
Salim Ur Rehman ◽  
Anees Ur Rehman ◽  
Hashmat Khan

Because of increasing interest in renewable energy sources in recent times, the studies concerning integration of Distributed Generation (DG) to power grid have been increased rapidly. Apart from other benefits, loss reduction and voltage profile improvement are its salient features. Non-optimal locations of DG units may lead to increase power losses. Optimal location of DGs in power systems is vital to maximize overall system efficiency. In this approach, optimization techniques have been applied to determine the optimal allocation and impact of DG on electric power system in terms of power loss reduction are analyzed. The Newton Raphson load flow analysis has been carried out on 10 bus system using ETAP software which shows that active power losses were reduced from 3302.2 KW to 400.7 KW after the installation of 5MW.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6008
Author(s):  
Teketay Mulu Beza ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The electrical distribution system has experienced a number of important changes due to the integration of distributed and renewable energy resources. Optimal integration of distributed generators (DGs) and distribution network reconfiguration (DNR) of the radial network have significant impacts on the power system. The main aim of this study is to optimize the power loss reduction and DG penetration level increment while keeping the voltage profile improvements with in the permissible limit. To do so, a hybrid of analytical approach and particle swarm optimization (PSO) are proposed. The proposed approach was tested on 33-bus and 69-bus distribution networks, and significant improvements in power loss reduction, DG penetration increment, and voltage profile were achieved. Compared with the base case scenario, power loss was reduced by 89.76% and the DG penetration level was increased by 81.59% in the 69-bus test system. Similarly, a power loss reduction of 82.13% and DG penetration level increment of 80.55% was attained for the 33-bus test system. The simulation results obtained are compared with other methods published in the literature.


Author(s):  
Sunday Adeleke Salimon ◽  
Abiodun Aderemi Baruwa ◽  
Saheed Oluwasina Amuda ◽  
Hafiz Adesupo Adeleke

Optimal allocation of shunt capacitors in the radial distribution networks results in both technical and economic benefits. This paper presents a two-stage method of Loss Sensitivity Factor (LSF) and Cuckoo Search Algorithm (CSA) to find the optimal size and location of shunt capacitors with the objective of minimizing cost due to power loss and reactive power compensation of the distribution networks. The first stage utilizes the LSF to predict the potential candidate buses for shunt capacitor placement thereby reducing the search space of the second stage and avoiding unnecessary repetitive load flow while the second stage uses the CSA to find the size and actual placement of the shunt capacitors satisfying the operating constraints. The applicability of the proposed two stage method is tested on the standard IEEE 33-bus and Ayepe 34-bus Nigerian radial distribution networks of the Ibadan Electricity Distribution Company. After running the algorithm, the simulation results gave percentage real and reactive power loss reduction of 34.28% and 28.94% as compared to the base case for the IEEE 33-bus system while the percentage real and reactive power loss reduction of 22.89% and 21.40% was recorded for the Ayepe 34-bus system. Comparison of the obtained results with other techniques in literatures for the standardized IEEE 33-bus reveals the efficiency of the proposed method as it achieved technical benefits of reduced total power loss, improved voltage profile and bus voltage stability, and the economic benefit of reduced total cost due to electrical power loss and compensation.


Sign in / Sign up

Export Citation Format

Share Document