scholarly journals Hybrid Architecture based on RNN-SVM for Multilingual Online Handwriting Recognition using Beta-elliptic and CNN models

Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>

2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>


2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>


2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>


2020 ◽  
Vol 50 (7) ◽  
pp. 2093-2104
Author(s):  
Sukhdeep Singh ◽  
Vinod Kumar Chauhan ◽  
Elisa H. Barney Smith

2018 ◽  
Vol 7 (3.20) ◽  
pp. 344 ◽  
Author(s):  
Ahmed AL-Saffar ◽  
Suryanti Awang ◽  
Wafaa AL-Saiagh ◽  
Sabrina Tiun ◽  
A S. Al-khaleefa

 Computer vision (CV) refers to the study of the computer simulation of human visual science. Major task of CV is to collect images (or video) so that they could be used for analysis, gathering information, and making decisions or judgements. CV has greatly progressed and developed in the past few decades. In recent years, deep learning (DL) approaches have won several contests in pattern recognition and machine learning. (DL) dramatically improved the state-of-the-art in visual object recognition, object detection, handwritten recognition and many other domains. Handwritten recognition technique is one of this tasks that targeted to extract the text from documents or another images type. In contrast to the English domain, there are a limited works on the Arabic language that achieved satisfactory results, Due to the Arabic language cursive nature that induces many technical difficulties. This paper highlighted the pre-processing and binarization methods that have been used in the literature along with proposed numerous directions for developing. We review the various current deep learning approaches and tools used for Arabic handwritten recognition (AHWR), identified challenges along this line of this research, and gives several recommendations including a framework based (DL) that is particularly applicable for dealing with cursive nature languages.  


Author(s):  
Victor Carbune ◽  
Pedro Gonnet ◽  
Thomas Deselaers ◽  
Henry A. Rowley ◽  
Alexander Daryin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document