online handwriting recognition
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Mustafa Ali Abuzaraida ◽  
Mohammed Elmehrek ◽  
Esam Elsomadi

With advances in machine learning techniques, handwriting recognition systems have gained a great deal of importance. Lately, the increasing popularity of handheld computers, digital notebooks, and smartphones give the field of online handwriting recognition more interest. In this paper, we propose an enhanced method for the recognition of Arabic handwriting words using a directions-based segmentation technique and discrete cosine transform (DCT) coefficients as structural features. The main contribution of this research was combining a total of 18 structural features which were extracted by DCT coefficients and using the k-nearest neighbors (KNN) classifier to classify the segmented characters based on the extracted features. A dataset is used to validate the proposed method consisting of 2500 words in total. The obtained average 99.10% accuracy in recognition of handwritten characters shows that the proposed approach, through its multiple phases, is efficient in separating, distinguishing, and classifying Arabic handwritten characters using the KNN classifier. The availability of an online dataset of Arabic handwriting words is the main issue in this field. However, the dataset used will be available for research via the website.



2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>



2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>



2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>



2021 ◽  
Author(s):  
Yahia Hamdi ◽  
Houcine Boubaker ◽  
Besma Rabhi ◽  
Wael Ouarda ◽  
Adel Alimi

Currently, deep learning approaches have proven successful in the areas of handwriting recognition. Despite this, research in this field is still needed, especially in the context of multilingual online handwriting recognition scripts by adopting new network architectures and combining relevant parametric models. In this paper, we propose a multi-stage deep learning-based algorithm for multilingual online handwriting recognition based on hybrid deep Bidirectional Long Short Term Memory (DBLSTM) and SVM networks. The main contributions of our work lie in partly in the composition of a new multi-stage architecture of deep learning networks associated with effective feature vectors that integrate dynamic and visual characteristics. First, the proposed system proceeds by pretreating the acquired script and delimiting its Segments of Online Handwriting Trajectories (SOHTs). Second, two types of feature vectors combining BetaElliptic Model (BEM) and Convolutional Neural Network (CNN) are extracted for each SOHT in order to fuzzy classify them into k sub-groups using DBLSTM neural networks for both online and offline branches trained using an unsupervised fuzzy k-means algorithm. Finally, we combine the trained models to strengthen the discrimination power of the global system using SVM engine. Extensive experiments on three data sets were conducted to validate the performance of the proposed method. The experimental results show the effectiveness and complementarities of the individual modules and the advantage of their fusion.<br>



2021 ◽  
Author(s):  
Besma Rabhi ◽  
Abdelkarim Elbaati ◽  
Houcine Boubaker ◽  
Yahia Hamdi ◽  
Amir Hussain ◽  
...  

Online signals are rich in dynamic features such as trajectory chronology, velocity, pressure and pen up/down movements. Their offline counterparts consist of a set of pixels. Thus, online handwriting recognition accuracy is generally better than offline. In this paper, we propose an original framework for recovering temporal order and pen velocity from offline multi-lingual handwriting. Our framework is based on an integrated sequence-to-sequence attention model. The proposed system involves extracting a hidden representation from an image using a Convolutional Neural Network (CNN) and a Bidirectional Gated Recurrent Unit (BGRU), and decoding the encoded vectors to generate dynamic information using a BGRU with temporal attention. We validate our framework using an online recognition system applied to a benchmark Latin, Arabic and Indian On/Off dual-handwriting character database. The performance of the proposed multi-lingual system is demonstrated through a low error rate of point coordinates and high accuracy system rate.



2021 ◽  
Author(s):  
Besma Rabhi ◽  
Abdelkarim Elbaati ◽  
Houcine Boubaker ◽  
Yahia Hamdi ◽  
Amir Hussain ◽  
...  

Online signals are rich in dynamic features such as trajectory chronology, velocity, pressure and pen up/down movements. Their offline counterparts consist of a set of pixels. Thus, online handwriting recognition accuracy is generally better than offline. In this paper, we propose an original framework for recovering temporal order and pen velocity from offline multi-lingual handwriting. Our framework is based on an integrated sequence-to-sequence attention model. The proposed system involves extracting a hidden representation from an image using a Convolutional Neural Network (CNN) and a Bidirectional Gated Recurrent Unit (BGRU), and decoding the encoded vectors to generate dynamic information using a BGRU with temporal attention. We validate our framework using an online recognition system applied to a benchmark Latin, Arabic and Indian On/Off dual-handwriting character database. The performance of the proposed multi-lingual system is demonstrated through a low error rate of point coordinates and high accuracy system rate.



2021 ◽  
pp. 1-11
Author(s):  
Harjeet Singh ◽  
R.K. Sharma ◽  
Muthukumaran Malarvel

Formation of Gurmukhi character/akshara from the recognized strokes in online handwriting recognition systems is a challenging task. In this paper, the task of character and akshara formation in an unconstrained environment have been addressed. After the recognition of online handwritten strokes the Gurmukhi akshara is formed using a hybrid approach. Two classifiers, namely, Support Vector Machine (SVM) and Recurrent Neural Network (RNN) have been experimented in this study. The classifier, yielded the maximum cross-validation accuracy has been utilized for stroke recognition. A total of 52,500 word samples have been collected from 175 writers in order to train the classifiers. Three post processing algorithms have been proposed in this article for improving the character and akshara recognition accuracy. The proposed methodology when tested on a dataset of 21,500 aksharas, written by 50 new writers, achieved average the accuracy rate of 97.1% and 87.1% for base character and akshara recognition, respectively.



Sign in / Sign up

Export Citation Format

Share Document