scholarly journals Adaptive Kalman Filter for Linear Systems with Additive and Multiplicative Noises

Author(s):  
Xingkai Yu

This manuscript investigates adaptive Kalman filter problem of of linear systems with multiplicative and additive noises. The main contributions are stated in two aspects. Firstly, compared with the estimation problem of linear systems with additive noises, we propose an algorithm that is applicable to the linear systems with both additive and multiplicative noises. To solve the technical issue raised by the multiplicative noise, a variational Bayesian approach is proposed. Moreover, the proposed approach is capable of estimating the multiplicative and additive measurement noise covariances as a whole, while the existing algorithms often operate in a separate way. Secondly, in contrast with existing literature, where the covariance of the multiplicative noise is assumed to be fixed and known, we focus on the situation that the covariances of both additive and multiplicative noises are time-varying and unknown. Towards this end, a novel adaptive Kalman filter is proposed to jointly estimate the covariances of multiplicative and additive noises based on projection formula and a VB approach.

2021 ◽  
Author(s):  
Xingkai Yu

This manuscript investigates adaptive Kalman filter problem of of linear systems with multiplicative and additive noises. The main contributions are stated in two aspects. Firstly, compared with the estimation problem of linear systems with additive noises, we propose an algorithm that is applicable to the linear systems with both additive and multiplicative noises. To solve the technical issue raised by the multiplicative noise, a variational Bayesian approach is proposed. Moreover, the proposed approach is capable of estimating the multiplicative and additive measurement noise covariances as a whole, while the existing algorithms often operate in a separate way. Secondly, in contrast with existing literature, where the covariance of the multiplicative noise is assumed to be fixed and known, we focus on the situation that the covariances of both additive and multiplicative noises are time-varying and unknown. Towards this end, a novel adaptive Kalman filter is proposed to jointly estimate the covariances of multiplicative and additive noises based on projection formula and a VB approach.


Author(s):  
Chenghao Shan ◽  
Weidong Zhou ◽  
Yefeng Yang ◽  
Zihao Jiang

Aiming at the problem that the performance of Adaptive Kalman filter estimation will be affected when the statistical characteristics of the process and measurement noise matrix are inaccurate and time-varying in the linear Gaussian state-space model, an algorithm of Multi-fading factor and update monitoring strategy adaptive Kalman filter based variational Bayesian is proposed. Inverse Wishart distribution is selected as the measurement noise model, the system state vector and measurement noise covariance matrix are estimated with the variational Bayesian method. The process noise covariance matrix is estimated by the maximum a posteriori principle, and the update monitoring strategy with adjustment factors is used to maintain the positive semi-definite of the updated matrix. The above optimal estimation results are introduced as time-varying parameters into the multiple fading factors to improve the estimation accuracy of the one-step state predicted covariance matrix. The application of the proposed algorithm in target tracking is simulated. The results show that compared with the current filters, the proposed filtering algorithm has better accuracy and convergence performance, and realizes the simultaneous estimation of inaccurate time-varying process and measurement noise covariance matrices.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 198
Author(s):  
Chenghao Shan ◽  
Weidong Zhou ◽  
Yefeng Yang ◽  
Zihao Jiang

Aiming at the problem that the performance of adaptive Kalman filter estimation will be affected when the statistical characteristics of the process and measurement of the noise matrices are inaccurate and time-varying in the linear Gaussian state-space model, an algorithm of multi-fading factor and an updated monitoring strategy adaptive Kalman filter-based variational Bayesian is proposed. Inverse Wishart distribution is selected as the measurement noise model and the system state vector and measurement noise covariance matrix are estimated with the variational Bayesian method. The process noise covariance matrix is estimated by the maximum a posteriori principle, and the updated monitoring strategy with adjustment factors is used to maintain the positive semi-definite of the updated matrix. The above optimal estimation results are introduced as time-varying parameters into the multiple fading factors to improve the estimation accuracy of the one-step state predicted covariance matrix. The application of the proposed algorithm in target tracking is simulated. The results show that compared with the current filters, the proposed filtering algorithm has better accuracy and convergence performance, and realizes the simultaneous estimation of inaccurate time-varying process and measurement noise covariance matrices.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5808
Author(s):  
Dapeng Wang ◽  
Hai Zhang ◽  
Baoshuang Ge

In this paper, an innovative optimal information fusion methodology based on adaptive and robust unscented Kalman filter (UKF) for multi-sensor nonlinear stochastic systems is proposed. Based on the linear minimum variance criterion, this multi-sensor information fusion method has a two-layer architecture: at the first layer, a new adaptive UKF scheme for the time-varying noise covariance is developed and serves as a local filter to improve the adaptability together with the estimated measurement noise covariance by applying the redundant measurement noise covariance estimation, which is isolated from the state estimation; the second layer is the fusion structure to calculate the optimal matrix weights and gives the final optimal state estimations. Based on the hypothesis testing theory with the Mahalanobis distance, the new adaptive UKF scheme utilizes both the innovation and the residual sequences to adapt the process noise covariance timely. The results of the target tracking simulations indicate that the proposed method is effective under the condition of time-varying process-error and measurement noise covariance.


Sign in / Sign up

Export Citation Format

Share Document