scholarly journals Fast Mutual Authentication Using RSA Moduli

Author(s):  
Anatoly Anisimov ◽  
Andrey Novokshonov

We describe a fast three-round mutual authentication protocol for parties A and B belonging to the same coalition group. Parties A and B keep their own independent long-term private keys that are used in the process of authentication and can be used for other purposes. The scheme assumes an initial setup with a trusted third party T. This party initiates another secret information that includes factors of a large RSA modulus. For authentication, both parties must demonstrate each other the knowledge of their private keys without revealing them and the ability to factorize a large RSA modulus. Thus, the protocol based on the suggested scheme provides reciprocal authentication. The scheme possesses all desirable properties of an interactive proof, i.e., completeness, soundness, and zero-knowledge. The security of the protocol relies on assumptions of difficulty of the RSA factorization and existence of a cryptographic hash function.

2021 ◽  
Author(s):  
Anatoly Anisimov ◽  
Andrey Novokshonov

We describe a fast three-round mutual authentication protocol for parties A and B belonging to the same coalition group. Parties A and B keep their own independent long-term private keys that are used in the process of authentication and can be used for other purposes. The scheme assumes an initial setup with a trusted third party T. This party initiates another secret information that includes factors of a large RSA modulus. For authentication, both parties must demonstrate each other the knowledge of their private keys without revealing them and the ability to factorize a large RSA modulus. Thus, the protocol based on the suggested scheme provides reciprocal authentication. The scheme possesses all desirable properties of an interactive proof, i.e., completeness, soundness, and zero-knowledge. The security of the protocol relies on assumptions of difficulty of the RSA factorization and existence of a cryptographic hash function.


Author(s):  
Ju-Seok Shin ◽  
Se-Jin Oh ◽  
Cheol-Ho Jeong ◽  
Kyung-Ho Chung ◽  
Kwang-Seon Ahn

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 607
Author(s):  
Mayuresh Sunil Pardeshi ◽  
Ruey-Kai Sheu ◽  
Shyan-Ming Yuan

Authentication is essential for the prevention of various types of attacks in fog/edge computing. Therefore, a novel mode-based hash chain for secure mutual authentication is necessary to address the Internet of Things (IoT) devices’ vulnerability, as there have been several years of growing concerns regarding their security. Therefore, a novel model is designed that is stronger and effective against any kind of unauthorized attack, as IoT devices’ vulnerability is on the rise due to the mass production of IoT devices (embedded processors, camera, sensors, etc.), which ignore the basic security requirements (passwords, secure communication), making them vulnerable and easily accessible. Furthermore, crackable passwords indicate that the security measures taken are insufficient. As per the recent studies, several applications regarding its requirements are the IoT distributed denial of service attack (IDDOS), micro-cloud, secure university, Secure Industry 4.0, secure government, secure country, etc. The problem statement is formulated as the “design and implementation of dynamically interconnecting fog servers and edge devices using the mode-based hash chain for secure mutual authentication protocol”, which is stated to be an NP-complete problem. The hash-chain fog/edge implementation using timestamps, mode-based hash chaining, the zero-knowledge proof property, a distributed database/blockchain, and cryptography techniques can be utilized to establish the connection of smart devices in large numbers securely. The hash-chain fog/edge uses blockchain for identity management only, which is used to store the public keys in distributed ledger form, and all these keys are immutable. In addition, it has no overhead and is highly secure as it performs fewer calculations and requires minimum infrastructure. Therefore, we designed the hash-chain fog/edge (HCFE) protocol, which provides a novel mutual authentication scheme for effective session key agreement (using ZKP properties) with secure protocol communications. The experiment outcomes proved that the hash-chain fog/edge is more efficient at interconnecting various devices and competed favorably in the benchmark comparison.


Author(s):  
Se-Jin Oh ◽  
Tae-Jin Yun ◽  
Chang-Hee Lee ◽  
Jae-Kang Lee ◽  
Kyung-Ho Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document