The New Activation Function for Complex Valued Neural Networks: Complex Swish Function

Author(s):  
Mehmet Çelebi ◽  
Murat Ceylan
2020 ◽  
Vol 32 (11) ◽  
pp. 2237-2248
Author(s):  
Masaki Kobayashi

A complex-valued Hopfield neural network (CHNN) with a multistate activation function is a multistate model of neural associative memory. The weight parameters need a lot of memory resources. Twin-multistate activation functions were introduced to quaternion- and bicomplex-valued Hopfield neural networks. Since their architectures are much more complicated than that of CHNN, the architecture should be simplified. In this work, the number of weight parameters is reduced by bicomplex projection rule for CHNNs, which is given by the decomposition of bicomplex-valued Hopfield neural networks. Computer simulations support that the noise tolerance of CHNN with a bicomplex projection rule is equal to or even better than that of quaternion- and bicomplex-valued Hopfield neural networks. By computer simulations, we find that the projection rule for hyperbolic-valued Hopfield neural networks in synchronous mode maintains a high noise tolerance.


2021 ◽  
pp. 1-20
Author(s):  
Shao-Qun Zhang ◽  
Zhi-Hua Zhou

Abstract Current neural networks are mostly built on the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons. This letter proposes the flexible transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity. The FT model employs a pair of parameters to model the neurotransmitters between neurons and puts up a neuron-exclusive variable to record the regulated neurotrophin density. Thus, the FT model can be formulated as a two-variable, two-valued function, taking the commonly used MP neuron model as its particular case. This modeling manner makes the FT model biologically more realistic and capable of handling complicated data, even spatiotemporal data. To exhibit its power and potential, we present the flexible transmitter network (FTNet), which is built on the most common fully connected feedforward architecture taking the FT model as the basic building block. FTNet allows gradient calculation and can be implemented by an improved backpropagation algorithm in the complex-valued domain. Experiments on a broad range of tasks show that FTNet has power and potential in processing spatiotemporal data. This study provides an alternative basic building block in neural networks and exhibits the feasibility of developing artificial neural networks with neuronal plasticity.


2021 ◽  
pp. 1-15
Author(s):  
Masaki Kobayashi

Abstract A complex-valued Hopfield neural network (CHNN) is a multistate Hopfield model. A quaternion-valued Hopfield neural network (QHNN) with a twin-multistate activation function was proposed to reduce the number of weight parameters of CHNN. Dual connections (DCs) are introduced to the QHNNs to improve the noise tolerance. The DCs take advantage of the noncommutativity of quaternions and consist of two weights between neurons. A QHNN with DCs provides much better noise tolerance than a CHNN. Although a CHNN and a QHNN with DCs have the samenumber of weight parameters, the storage capacity of projection rule for QHNNs with DCs is half of that for CHNNs and equals that of conventional QHNNs. The small storage capacity of QHNNs with DCs is caused by projection rule, not the architecture. In this work, the ebbian rule is introduced and proved by stochastic analysis that the storage capacity of a QHNN with DCs is 0.8 times as many as that of a CHNN.


2004 ◽  
Vol 16 (12) ◽  
pp. 2699-2713 ◽  
Author(s):  
Su Lee Goh ◽  
Danilo. P. Mandic

A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with strong component correlations. In addition, this algorithm is generic and represents a natural extension of the real-valued RTRL. Simulations on benchmark and real-world complex-valued signals support the approach.


Author(s):  
K. Anitha ◽  
R. Dhanalakshmi ◽  
K. Naresh ◽  
D. Rukmani Devi

Neural networks play a significant role in data classification. Complex-valued Hopfield Neural Network (CHNN) is mostly used in various fields including the image classification. Though CHNN has proven its credibility in the classification task, it has a few issues. Activation function of complex-valued neuron maps to a unit circle in the complex plane affecting the resolution factor, flexibility and compatibility to changes, during adaptation in retrieval systems. The proposed work demonstrates Content-Based Image Retrieval System (CBIR) with Hyperbolic Hopfield Neural Networks (HHNN), an analogue of CHNN for classifying images. Activation function of the Hyperbolic neuron is not cyclic in hyperbolic plane. The images are mathematically represented and indexed using the six basic features. The proposed HHNN classifier is trained, tested and evaluated through extensive experiments considering individual features and four combined features for indexing. The obtained results prove that HHNN guides retrieval process, enhances system performance and minimizes the cost of implementing Neural Network Classifier-based image retrieval system.


Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 5009-5018
Author(s):  
Lei Ding ◽  
Lin Xiao ◽  
Kaiqing Zhou ◽  
Yonghong Lan ◽  
Yongsheng Zhang

Compared to the linear activation function, a suitable nonlinear activation function can accelerate the convergence speed. Based on this finding, we propose two modified Zhang neural network (ZNN) models using different nonlinear activation functions to tackle the complex-valued systems of linear equation (CVSLE) problems in this paper. To fulfill this goal, we first propose a novel neural network called NRNN-SBP model by introducing the sign-bi-power activation function. Then, we propose another novel neural network called NRNN-IRN model by introducing the tunable activation function. Finally, simulative results demonstrate that the convergence speed of NRNN-SBP and the NRNN-IRN is faster than that of the FTRNN model. On the other hand, these results also reveal that different nonlinear activation function will have a different effect on the convergence rate for different CVSLE problems.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document