scholarly journals Incorporation of sarcolemmal calcium transporters into the Shorten et al. (2007) model of skeletal muscle: equations, coding, and stability

Author(s):  
Denis Noble ◽  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.

2020 ◽  
Author(s):  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Kazuyo Tasaki ◽  
Nima Afshar ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.


2020 ◽  
Author(s):  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Kazuyo Tasaki ◽  
Nima Afshar ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Nima Afshar ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Denis Noble ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Nima Afshar ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Denis Noble ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Denis Noble ◽  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2021 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Nima Afshar ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


Sign in / Sign up

Export Citation Format

Share Document