ion movements
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 7)

H-INDEX

37
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


2021 ◽  
Vol 23 (37) ◽  
pp. 21097-21105
Author(s):  
Maximilian Schalenbach ◽  
Yassin Emre Durmus ◽  
Hermann Tempel ◽  
Hans Kungl ◽  
Rüdiger-A. Eichel

At small amplitudes, the equilibrium positions of the ions are changed. High amplitudes lead to a drastic distortion of the ion arrangement in the double layer, increasing the capacitance and asymmetric ion movements.


2020 ◽  
Author(s):  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Kazuyo Tasaki ◽  
Nima Afshar ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.


2020 ◽  
Author(s):  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Kazuyo Tasaki ◽  
Nima Afshar ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.


2020 ◽  
Author(s):  
Denis Noble ◽  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

We describe a major development of the Shorten et al. (Shorten et al., 2007) model of skeletal muscle electrophysiology, biochemistry, and mechanics. The model was developed by incorporating equations for sarcolemmal transport of calcium ions, including L-type calcium channel, sodium-calcium exchange, calcium pump, and background calcium channel. The extended model also includes an addition to the equations for extracellular potassium ion movements to enable the exchange of potassium ions between bulk (plasma) concentration and the interstitial and tubular compartments to be modeled. In further research in an accompanying paper (Tasaki et al, 2019), we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp using this extended model in comparison with the original model.


2019 ◽  
Vol 151 (9) ◽  
pp. 1146-1155 ◽  
Author(s):  
Judith A. Heiny ◽  
Stephen C. Cannon ◽  
Marino DiFranco

Ion movements across biological membranes, driven by electrochemical gradients or active transport mechanisms, control essential cell functions. Membrane ion movements can manifest as electrogenic currents or electroneutral fluxes, and either process can alter the extracellular and/or intracellular concentration of the transported ions. Classic electrophysiological methods allow accurate measurement of membrane ion movements when the transport mechanism produces a net ionic current; however, they cannot directly measure electroneutral fluxes and do not detect any accompanying change in intracellular ion concentrations. Here, we developed a method for simultaneously measuring ion movements and the accompanying dynamic changes in intracellular ion concentrations in intact skeletal muscle fibers under voltage or current clamp in real time. The method combines a two-microelectrode voltage clamp with ion-selective and reference microelectrodes (four-electrode system). We validate the electrical stability of the system and the viability of the preparation for periods of ∼1 h. We demonstrate the power of this method with measurements of intracellular Cl−, H+, and Na+ to show (a) voltage-dependent redistribution of Cl− ions; (b) intracellular pH changes induced by changes in extracellular pCO2; and (c) electroneutral and electrogenic Na+ movements controlled by the Na,K-ATPase. The method is useful for studying a range of transport mechanisms in many cell types, particularly when the transmembrane ion movements are electrically silent and/or when the transport activity measurably changes the intracellular activity of a transported ion.


2019 ◽  
Author(s):  
Judith A. Heiny ◽  
Stephen C. Cannon ◽  
Marino DiFranco

ABSTRACTIon movements across biological membranes, driven by electrochemical gradients or active transport mechanisms, control essential cell functions. Membrane ion movements can manifest as electrogenic currents or electroneutral fluxes, and either process can alter the extracellular and/or intracellular concentration of the transported ion(s). Classical electrophysiological methods allow accurate measurement of membrane ion movements when the transport mechanism produces a net ionic current; however, they cannot directly measure electroneutral fluxes and do not detect any accompanying change in intracellular ion concentrations.Here, we developed a method for simultaneously measuring ion movements and the accompanying dynamic changes in intracellular ion concentration(s) in intact skeletal muscle fibers under voltage– or current clamp in real time. The method combines a two-microelectrode voltage-clamp with ion-selective and reference microelectrodes (4 electrode system). We validate the electrical stability of the system and the viability of the preparation for periods of approximately 1 h. We demonstrate the power of this method with measurements of intracellular Cl-, H+, and Na+ to show: 1) voltage-dependent redistribution of Cl- ions; 2) intracellular pH changes induced by changes in extracellular pCO2; and 3) electroneutral and electrogenic Na+ movements controlled by the Na,K-ATPase. The method is useful for studying a range of transport mechanisms in many cell types, particularly when the transmembrane ion movements are electrically silent and/or when the transport activity measurably changes the intracellular activity of a transported ion.


Cell Calcium ◽  
2018 ◽  
Vol 76 ◽  
pp. 10-22 ◽  
Author(s):  
Liat van Dijk ◽  
Moshe Giladi ◽  
Bosmat Refaeli ◽  
Reuben Hiller ◽  
Mary Hongying Cheng ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
J. Ramesh Babu ◽  
K. Ravindhranath ◽  
K. Vijaya Kumar

Composite polymer electrolyte films containing various concentrations of nano-Dy2O3 (1.0 to 4.0%) in PVA + sodium citrate (90 : 10) are synthesized adopting solution cast method and are characterized using FTIR, XRD, SEM, and DSC techniques. The investigations indicate that all components are homogenously dispersed. Films containing 3% of nano-Dy2O3 are more homogenous and less crystalline, and the same is supported by DSC studies indicating the friendly nature to ionic conductivity. Transference number studies reveal that the major charge carriers are ions. With the increase in % of nano-Dy2O3, the conductivity increases and reaches maximum in 3% film with a value of 1.06 × 10−4 S/cm (at 303 K). Further, the conductivity of the film increases with raise in temperature due to the hopping of interchain and intrachain ion movements and fall in microscopic viscosity at the matrix interface of the film. Electrochemical cells are fabricated using these films with the configuration “anode (Mg + MgSO4)/[PVA (90%) + Na3C6H5O7 (10%) + (1–4% nano-Dy2O3)]/cathode (I2 + C + electrolyte),” and various discharge characteristics are evaluated. With 3% nano-Dy2O3 film, the maximum discharge time of 118 hrs with open-circuit voltage of 2.68 V, power density of 0.91 W/kg, and energy density of 107.5 Wh/kg are observed. These findings reflect the successful adoption of the developed polymer electrolyte films in electrochemical cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
J. Ramesh Babu ◽  
K. Ravindhranath ◽  
K. Vijaya Kumar

Varying concentrations of nano-Pr2O3 doped in “PVA + Sodium Citrate (90 : 10)” polyelectrolyte films are synthesized using solution cast technique and the films are characterized adopting FTIR, XRD, SEM, and DSC methods. The film with 3.0% of nano-Pr2O3 content is more homogenous and possesses more amorphous region that facilitate the deeper penetration of nanoparticles into the film causing more interactions between the functional groups of the polymeric film and nano-Pr2O3 particles and thereby turning the film more friendlily to the proton conductivity. The conductivity is maximum of 7 × 10−4 S/cm at room temperature for 3.0% nano-Pr2O3 film and at that composition, the activation energy and crystallinity are low. With increase in temperature, the conductivity is increasing and it is attributed to the hopping of interchain and intrachain ion movements and furthermore decrease in microscopic viscosity of the films. The major charge carriers are ions and not electrons. These films are incorporated successfully as polyelectrolytes in electrochemical cells which are evaluated for their discharge characteristics. It is found that the discharge time is maximum of 140 hrs with open circuit voltage of 1.78 V for film containing 3% of nano-Pr2O3 and this reflects its adoptability in the solid-state battery applications.


Sign in / Sign up

Export Citation Format

Share Document