scholarly journals On Lin's condition for products of random variables with singular joint distribution

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
ALEXANDER IL'INSKII ◽  
SOFIYA OSTROVSKA
1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


2012 ◽  
Vol 49 (3) ◽  
pp. 895-900
Author(s):  
Sheldon M. Ross

We find the joint distribution of the lengths of the shortest paths from a specified node to all other nodes in a network in which the edge lengths are assumed to be independent heterogeneous exponential random variables. We also give an efficient way to simulate these lengths that requires only one generated exponential per node, as well as efficient procedures to use the simulated data to estimate quantities of the joint distribution.


1990 ◽  
Vol 33 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Y. H. Wang

AbstractIn this paper, we consolidate into one two separate problems - dependent random variables with independent subsets and construction of a joint distribution with given marginals. Let N = {1,2,3,...} and X = {Xn; n ∊ N} be a sequence of random variables with nondegenerate one-dimensional marginal distributions {Fn; n ∊ N}. An example is constructed to show that there exists a sequence of random variables Y = {Yn; n ∊ N} such that the components of a subset of Y are independent if and only if its size is ≦ k, where k ≧ 2 is a prefixed integer. Furthermore, the one-dimensional marginal distributions of Y are those of X.


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


2018 ◽  
Vol 43 (3) ◽  
pp. 887-918 ◽  
Author(s):  
Napat Rujeerapaiboon ◽  
Daniel Kuhn ◽  
Wolfram Wiesemann

Author(s):  
Asbjørn Christian Nordentoft

Abstract In this paper, we determine the limiting distribution of the image of the Eichler–Shimura map or equivalently the limiting joint distribution of the coefficients of the period polynomials associated to a fixed cusp form. The limiting distribution is shown to be the distribution of a certain transformation of two independent random variables both of which are equidistributed on the circle $\mathbb{R}/\mathbb{Z}$, where the transformation is connected to the additive twist of the cuspidal $L$-function. Furthermore, we determine the asymptotic behavior of the zeroes of the period polynomials of a fixed cusp form. We use the method of moments and the main ingredients in the proofs are additive twists of $L$-functions and bounds for both individual and sums of Kloosterman sums.


1973 ◽  
Vol 10 (01) ◽  
pp. 122-129 ◽  
Author(s):  
Janos Galambos

The asymptotic distribution of the maximum of a random number of random variables taken from the model below is shown to be the same as when their number is a fixed integer. Applications are indicated to determine the service time of a system of a large number of components, when the number of components to be serviced is not known in advance. A much slighter assumption is made than the stochastic independence of the periods of time needed for servicing the different components. In our model we assume that the random variables can be grouped into a number of subcollections with the following properties: (i) the random variables taken from different groups are asymptotically independent, (ii) the largest number of elements in a subgroup is of smaller order than the overall number of random variables. In addition, a very mild assumption is made for the joint distribution of elements from the same group.


Sign in / Sign up

Export Citation Format

Share Document