Central Limit Theorems for Interchangeable Processes

1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.

Author(s):  
L. ACCARDI ◽  
V. CRISMALE ◽  
Y. G. LU

Cabana-Duvillard and lonescu11 have proved that any symmetric probability measure with moments of any order can be obtained as central limit theorem of self-adjoint, weakly independent and symmetrically distributed (in a quantum souse) random variables. Results of this type will be called "universal central limit theorem". Using Interacting Fock Space (IFS) techniques we extend this result in two directions: (i) we prove that the random variables can be taken to be generalized Gaussian in the sense of Accardi and Bożejko3 and we give a realization of such random variables as sums of creation, annihilation and preservation operators acting on an appropriate IFS; (ii) we extend the above-mentioned result to the nonsymmetric case. The nontrivial difference between the symmetric and the nonsymmetric case is explained at the end of the introduction below.


1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


1982 ◽  
Vol 91 (3) ◽  
pp. 477-484
Author(s):  
Gavin Brown ◽  
William Mohan

Let μ be a probability measure on the real line ℝ, x a real number and δ(x) the probability atom concentrated at x. Stam made the interesting observation that eitheror else(ii) δ(x)* μn, are mutually singular for all positive integers n.


Sign in / Sign up

Export Citation Format

Share Document