scholarly journals Faces of Birkhoff Polytopes

10.37236/4499 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Andreas Paffenholz

The Birkhoff polytope $B_n$ is the convex hull of all $(n\times n)$ permutation matrices, i.e., matrices where precisely one entry in each row and column is one, and zeros at all other places. This is a widely studied polytope with various applications throughout mathematics.In this paper we study combinatorial types $\mathcal L$ of faces of a Birkhoff polytope. The Birkhoff dimension $\mathrm{bd}(\mathcal L)$ of $\mathcal L$ is the smallest $n$ such that $B_n$ has a face with combinatorial type $\mathcal L$.By a result of Billera and Sarangarajan, a combinatorial type $\mathcal L$ of a $d$-dimensional face  appears in some $\mathcal B_k$ for $k\le 2d$, so $\mathrm{bd}(\mathcal L)\le 2d$. We will characterize those types with $\mathrm{bd}(\mathcal L)\ge 2d-3$, and we prove that any type with $\mathrm{bd}(\mathcal L)\ge d$ is either a product or a wedge over some lower dimensional face. Further, we computationally classify all $d$-dimensional combinatorial types for $2\le d\le 8$.


1969 ◽  
Vol 12 (5) ◽  
pp. 625-633
Author(s):  
Choo-Whan Kim

A celebrated theorem of Birkhoff ([1], [6]) states that the set of n × n doubly stochastic matrices is identical with the convex hull of the set of n × n permutation matrices. Birkhoff [2, p. 266] proposed the problem of extending his theorem to the set of infinite doubly stochastic matrices. This problem, which is often known as Birkhoffs Problem III, was solved by Isbell ([3], [4]), Rattray and Peck [7], Kendall [5] and Révész [8].



10.37236/130 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Jessica Striker

We define the alternating sign matrix polytope as the convex hull of $n\times n$ alternating sign matrices and prove its equivalent description in terms of inequalities. This is analogous to the well known result of Birkhoff and von Neumann that the convex hull of the permutation matrices equals the set of all nonnegative doubly stochastic matrices. We count the facets and vertices of the alternating sign matrix polytope and describe its projection to the permutohedron as well as give a complete characterization of its face lattice in terms of modified square ice configurations. Furthermore we prove that the dimension of any face can be easily determined from this characterization.



1960 ◽  
Vol 3 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Diane M. Johnson ◽  
A. L. Dulmage ◽  
N. S. Mendelsohn

In [1] G. Birkhoff stated an algorithm for expressing a doubly stochastic matrix as an average of permutation matrices. In this note we prove two graphical lemmas and use these to find an upper bound for the number of permutation matrices which the Birkhoff algorithm may use.A doubly stochastic matrix is a matrix of non-negative elements with row and column sums equal to unity and is there - fore a square matrix. A permutation matrix is an n × n doubly stochastic matrix which has n2-n zeros and consequently has n ones, one in each row and one in each column. It has been shown by Birkhoff [1],Hoffman and Wielandt [5] and von Neumann [7] that the set of all doubly stochastic matrices, considered as a set of points in a space of n2 dimensions constitute the convex hull of permutation matrices.



1958 ◽  
Vol 9 (2) ◽  
pp. 253-253 ◽  
Author(s):  
N. S. Mendelsohn ◽  
A. L. Dulmage


1989 ◽  
Vol 136 (6) ◽  
pp. 530
Author(s):  
G.R. Wilson ◽  
B.G. Batchelor
Keyword(s):  




2019 ◽  
Vol 31 (5) ◽  
pp. 761
Author(s):  
Xiao Lin ◽  
Zuxiang Liu ◽  
Xiaomei Zheng ◽  
Jifeng Huang ◽  
Lizhuang Ma


2011 ◽  
Vol 30 (10) ◽  
pp. 2384-2387 ◽  
Author(s):  
Hua Qiao ◽  
Wu Guan ◽  
Ming-ke Dong ◽  
Hai-ge Xiang


1988 ◽  
Author(s):  
Egon Balas
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document