scholarly journals Promotion and Evacuation on Standard Young Tableaux of Rectangle and Staircase Shape

10.37236/505 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Steven Pon ◽  
Qiang Wang

(Dual-)promotion and (dual-)evacuation are bijections on $SYT(\lambda)$ for any partition $\lambda$. Let $c^r$ denote the rectangular partition $(c,\ldots,c)$ of height $r$, and let $sc_k$ ($k>2$) denote the staircase partition $(k,k-1,\ldots,1)$. We demonstrate a promotion- and evacuation-preserving embedding of $SYT(sc_k)$ into $SYT(k^{k+1})$. We hope that this result, together with results by Rhoades on rectangular tableaux, can help to demonstrate the cyclic sieving phenomenon of promotion action on $SYT(sc_k)$.


10.37236/8802 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Young-Tak Oh ◽  
Euiyong Park

In this paper, we study a new cyclic sieving phenomenon on the set $\mathsf{SST}_n(\lambda)$ of semistandard Young tableaux with the cyclic action $\mathsf{c}$ arising from its $U_q(\mathfrak{sl}_n)$-crystal structure. We prove that if $\lambda$ is a Young diagram with $\ell(\lambda) < n$ and $\gcd( n, |\lambda| )=1$, then the triple $\left( \mathsf{SST}_n(\lambda), \mathsf{C}, q^{- \kappa(\lambda)} s_\lambda(1,q, \ldots, q^{n-1}) \right) $ exhibits the cyclic sieving phenomenon, where $\mathsf{C}$ is the cyclic group generated by $\mathsf{c}$. We further investigate a connection between $\mathsf{c}$ and the promotion $\mathsf{pr}$ and show the bicyclic sieving phenomenon given by $\mathsf{c}$ and $\mathsf{pr}^n$ for hook shape.



2021 ◽  
Vol 9 ◽  
Author(s):  
Per Alexandersson ◽  
Stephan Pfannerer ◽  
Martin Rubey ◽  
Joakim Uhlin

Abstract In 2010, Rhoades proved that promotion on rectangular standard Young tableaux, together with the associated fake-degree polynomial, provides an instance of the cyclic sieving phenomenon. We extend this result to m-tuples of skew standard Young tableaux of the same shape, for fixed m, subject to the condition that the mth power of the associated fake-degree polynomial evaluates to nonnegative integers at roots of unity. However, we are unable to specify an explicit group action. Put differently, we determine in which cases the mth tensor power of a skew character of the symmetric group carries a permutation representation of the cyclic group. To do so, we use a method proposed by Amini and the first author, which amounts to establishing a bound on the number of border-strip tableaux of skew shape. Finally, we apply our results to the invariant theory of tensor powers of the adjoint representation of the general linear group. In particular, we prove the existence of a bijection between permutations and Stembridge’s alternating tableaux, which intertwines rotation and promotion.



2021 ◽  
Vol 344 (7) ◽  
pp. 112395
Author(s):  
Rosena R.X. Du ◽  
Jingni Yu


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.



10.37236/6466 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Ping Sun

Let $g_{n_1,n_2}$ be the number of standard Young tableau of truncated shifted shape with $n_1$ rows and $n_2$ boxes in each row. By using the integral method this paper derives the recurrence relations of $g_{3,n}$, $g_{n,4}$ and $g_{n,5}$ respectively. Specifically, $g_{n,4}$ is the $(2n-1)$-st Pell number.



10.37236/3890 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Ping Sun

In this paper the number of standard Young tableaux (SYT) is evaluated by the methods of multiple integrals and combinatorial summations. We obtain the product formulas of the numbers of skew SYT of certain truncated shapes, including the skew SYT $((n+k)^{r+1},n^{m-1}) / (n-1)^r $ truncated by a rectangle or nearly a rectangle, the skew SYT of truncated shape $((n+1)^3,n^{m-2}) / (n-2) \backslash \; (2^2)$, and the SYT of truncated shape $((n+1)^2,n^{m-2}) \backslash \; (2)$.



10.37236/2419 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Stefan Kluge

In this paper we prove that the set of non-crossing forests together with a cyclic group acting on it by rotation and a natural q-analogue of the formula for their number exhibits the cyclic sieving phenomenon, as conjectured by Alan Guo.



2004 ◽  
Vol 108 (1) ◽  
pp. 17-50 ◽  
Author(s):  
V. Reiner ◽  
D. Stanton ◽  
D. White


2019 ◽  
Vol 15 (09) ◽  
pp. 1919-1968 ◽  
Author(s):  
Ofir Gorodetsky

We establish a supercongruence conjectured by Almkvist and Zudilin, by proving a corresponding [Formula: see text]-supercongruence. Similar [Formula: see text]-supercongruences are established for binomial coefficients and the Apéry numbers, by means of a general criterion involving higher derivatives at roots of unity. Our methods lead us to discover new examples of the cyclic sieving phenomenon, involving the [Formula: see text]-Lucas numbers.





Sign in / Sign up

Export Citation Format

Share Document