scholarly journals Upper Bound on the Circular Chromatic Number of the Plane

10.37236/5418 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Konstanty Junosza-Szaniawski

We consider circular version of the famous Nelson-Hadwiger problem. It is know that 4 colors are necessary and 7 colors suffice to color the euclidean plane in such a way that points at distance one get different colors. In $r$-circular coloring we assign arcs of length one of a circle with a perimeter $r$ in such a way that points at distance one get disjoint arcs. In this paper we show the existence of $r$-circular coloring for $r=4+\frac{4\sqrt{3}}{3}\approx 6.30$. It is the first result with $r$-circular coloring of the plane with $r$ smaller than 7. We also show $r$-circular coloring of the plane with $r<7$ in the case when we require disjoint arcs for points at distance belonging to the internal [0.9327,1.0673].






2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.



2021 ◽  
Vol 41 (2) ◽  
pp. 441
Author(s):  
Robert Janczewski ◽  
Anna Maria Trzaskowska ◽  
Krzysztof Turowski


2003 ◽  
Vol 44 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Hossein Hajiabolhassan ◽  
Xuding Zhu


2005 ◽  
Vol 42 (3) ◽  
pp. 253-264
Author(s):  
Károly Böröczky ◽  
Zsolt Lángi

Let C be a convex body in the Euclidean plane. By the relative distance of points p and q we mean the ratio of the Euclidean distance of p and q to the half of the Euclidean length of a longest chord of C parallel to pq. In this note we find the least upper bound of the minimum pairwise relative distance of six points in a plane convex body.





2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.



2020 ◽  
Vol 283 ◽  
pp. 275-291
Author(s):  
Wanshun Yang ◽  
Weifan Wang ◽  
Yiqiao Wang


Sign in / Sign up

Export Citation Format

Share Document