scholarly journals Shell Tableaux: A Set Partition Analog of Vacillating Tableaux

10.37236/8241 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Megan Ly

Schur–Weyl duality is a fundamental framework in combinatorial representation theory. It intimately relates the irreducible representations of a group to the irreducible representations of its centralizer algebra. We investigate the analog of Schur–Weyl duality for the group of unipotent upper triangular matrices over a finite field.  In this case, the character theory of these upper triangular matrices is "wild" or unattainable. Thus we employ a generalization, known as supercharacter theory, that creates a striking variation on the character theory of the symmetric group with combinatorics built from set partitions. In this paper, we present a combinatorial formula for calculating a restriction and induction of supercharacters based on statistics of set partitions and seashell inspired diagrams. We use these formulas to create a graph that encodes the decomposition of a tensor space, and develop an analog of Young tableaux, known as shell tableaux, to index paths in this graph. 

10.37236/112 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Nathaniel Thiem ◽  
Vidya Venkateswaran

It is well-known that understanding the representation theory of the finite group of unipotent upper-triangular matrices $U_n$ over a finite field is a wild problem. By instead considering approximately irreducible representations (supercharacters), one obtains a rich combinatorial theory analogous to that of the symmetric group, where we replace partition combinatorics with set-partitions. This paper studies the supercharacter theory of a family of subgroups that interpolate between $U_{n-1}$ and $U_n$. We supply several combinatorial indexing sets for the supercharacters, supercharacter formulas for these indexing sets, and a combinatorial rule for restricting supercharacters from one group to another. A consequence of this analysis is a Pieri-like restriction rule from $U_n$ to $U_{n-1}$ that can be described on set-partitions (analogous to the corresponding symmetric group rule on partitions).


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Stephen Lewis ◽  
Nathaniel Thiem

International audience The standard supercharacter theory of the finite unipotent upper-triangular matrices $U_n(q)$ gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of $U_m(q) \subseteq U_n(q)$ for $m \leq n$ lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of $U_n(q)$ is a nonnegative integer linear combination of supercharacters of $U_m(q)$ (in fact, it is polynomial in $q$). In a first step towards understanding the combinatorics of coefficients in the branching rules of the supercharacters of $U_n(q)$, this paper characterizes when a given coefficient is nonzero in the restriction of a supercharacter and the tensor product of two supercharacters. These conditions are given uniformly in terms of complete matchings in bipartite graphs. La théorie standard des supercaractères des matrices triangulaires supérieures unipotentes finies $U_n(q)$ donne lieu à une merveilleuse combinatoire basée sur les partitions d'ensembles. Comme avec la théorie des représentations du groupe symétrique, Les plongements $U_m(q) \subseteq U_n(q)$ pour $m \leq n$ mènent aux règles de branchement. Diaconis et Isaacs ont montré que la restriction d'un supercaractère de $U_n(q)$ est une combinaison linéaire des supercaractères de $U_m(q)$ avec des coefficients entiers non négatifs (en fait, elle est polynomiale en $q$). Dans une première étape vers la compréhension de la combinatoire des coefficients dans les règles de branchement des supercaractères de $U_n(q)$, ce texte caractérise les coefficients non nuls dans la restriction d'un supercaractère et dans le produit des tenseurs de deux supercaractères. Ces conditions sont données uniformément en termes des couplages complets dans des graphes bipartis.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Nathaniel Thiem

International audience It is becoming increasingly clear that the supercharacter theory of the finite group of unipotent upper-triangular matrices has a rich combinatorial structure built on set-partitions that is analogous to the partition combinatorics of the classical representation theory of the symmetric group. This paper begins by exploring a connection to the ring of symmetric functions in non-commuting variables that mirrors the symmetric group's relationship with the ring of symmetric functions. It then also investigates some of the representation theoretic structure constants arising from the restriction, tensor products and superinduction of supercharacters.


10.37236/325 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Mark Dukes ◽  
Robert Parviainen

This paper presents a bijection between ascent sequences and upper triangular matrices whose non-negative entries are such that all rows and columns contain at least one non-zero entry. We show the equivalence of several natural statistics on these structures under this bijection and prove that some of these statistics are equidistributed. Several special classes of matrices are shown to have simple formulations in terms of ascent sequences. Binary matrices are shown to correspond to ascent sequences with no two adjacent entries the same. Bidiagonal matrices are shown to be related to order-consecutive set partitions and a simple condition on the ascent sequences generate this class.


10.37236/2550 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Adam M Goyt ◽  
Brady L Keller ◽  
Jonathan E Rue

We study q-analogues of k-Fibonacci numbers that arise from weighted tilings of an $n\times1$ board with tiles of length at most k.  The weights on our tilings arise naturally out of distributions of permutations statistics and set partitions statistics.  We use these q-analogues to produce q-analogues of identities involving k-Fibonacci numbers.  This is a natural extension of results of the first author and Sagan on set partitions and the first author and Mathisen on permutations.  In this paper we give general q-analogues of k-Fibonacci identities for arbitrary weights that depend only on lengths and locations of tiles.  We then determine weights for specific permutation or set partition statistics and use these specific weights and the general identities to produce specific identities.


Sign in / Sign up

Export Citation Format

Share Document